More evidence for controversial theory that herpesviruses play role in Alzheimer's disease

June 21, 2018

The quest to understand what causes Alzheimer's disease--and to treat it--is complicated by the disease's long, slow progression and the difficulty of collecting brain tissue samples. But in a large-scale analysis published June 21 in the journal Neuron, researchers at the Icahn School of Medicine at Mount Sinai use data from three different brain banks to suggest that human herpesviruses are more abundant in the brains of Alzheimer's patients and may play a role in regulatory genetic networks that are believed to lead to the disease. This work lends support to the controversial hypothesis that viruses are involved in Alzheimer's disease and offers potential new paths for treatment.

"The title of the talk that I usually give is, 'I Went Looking for Drug Targets and All I Found Were These Lousy Viruses.' We didn't set out to find what we found. Not even close. We were trying to find drugs that could be repurposed to treat Alzheimer's patients, but the patterns that emerged from our data-driven analysis all pointed towards these viral biology themes," says co-senior author and geneticist Joel Dudley. who is also a member of the ASU-Banner Neurodegenerative Disease Research Center.

The researchers analyzed data from three major brain banks courtesy of the National Institutes of Health's Accelerating Medicines Partnership - Alzheimer's Disease (AMP-AD) consortium, which allowed them to look at raw genomic data for large numbers of Alzheimer's patients in different cohorts. They constructed, mapped, and compared regulatory gene networks in areas of the brain known to be affected by Alzheimer's on multiple levels, looking at DNA, RNA, and proteins.

"This kind of analysis was only possible because the consortium had coordinated for all of these other groups to put their sequencing data in the AMP-AD Knowledge Portal in a precompetitive environment that let us very quickly replicate our work across all these different cohorts. We needed access to sequences that are usually discarded in the course of studying the human genome. We needed to search for sequences from hundreds of different viruses, so having access to that raw, unprocessed data was absolutely key," says first author Ben Readhead.

They found that human herpesvirus DNA and RNA were more abundant in the brains of those diagnosed postmortem with Alzheimer's disease and that abundance correlated with clinical dementia scores. And the two viruses they found to be most strongly associated with Alzheimer's, HHV-6A and HHV-7, were not as abundant in the brains of those with other neurodegenerative disorders. When they constructed networks that modeled how the viral genes and human genes interacted, they were able to show that the viral genes were regulating and being regulated by the human genes--and that genes associated with increased Alzheimer's risk were impacted.

"Previous studies of viruses and Alzheimer's have always been very correlative. But we were able to do statistical causal inference testing and more sophisticated analysis, which allowed us to identify how the viruses are directly interacting with or coregulating or being regulated by Alzheimer's genes. I don't think we can answer whether herpesviruses are a primary cause of Alzheimer's disease. But what's clear is that they're perturbing networks and participating in networks that directly accelerate the brain towards the Alzheimer's topology," says Dudley.

The researchers believe that their findings align with other current research in the Alzheimer's field on the role of innate immunity in the disease, particularly recent findings that beta-amyloid protein--the culprit behind the plaques that build up in the Alzheimer's-affected brain--may accumulate as part of a defense against infections. In their study, they found that herpesviruses were involved in networks that regulate amyloid precursor proteins.

They argue, however, that their work shouldn't make anyone worried. "While these findings do potentially open the door for new treatment options to explore in a disease where we've had hundreds of failed trials, they don't change anything that we know about the risk and susceptibility of Alzheimer's disease or our ability to treat it today," says co-senior author and Alzheimer's disease specialist Sam Gandy.

This is especially true because HHV-6A and HHV-7 are extremely common and often latent or asymptomatic: in North America, almost 90% of children have one of these viruses circulating in their blood by the time they're a few years old. "There are still a lot of unanswered questions around how we go from being able to detect it circulating in someone's blood to knowing whether it's active in a state that might be relevant to Alzheimer's disease," says Readhead.

But even if questions remain, this research offers strong support for a long-controversial hypothesis that viruses might be involved in the development of Alzheimer's disease. "We didn't have a horse in this virus race whatsoever. It's the data that took us there. And now, not only is the viral hypothesis resurrected: it has specific testable pathways and networks and interactions that can be explored and reconciled with the rest of the work emerging in Alzheimer's," says Dudley.

"All these Alzheimer's brains in these separate, major brain banks have previously unsuspected substantial populations of herpesvirus genomes and that deserves an explanation wherever it falls in the pathogenesis. It doesn't deserve to just be brushed away," says Gandy.
-end-
More on this research is available in announcements from the Icahn School of Medicine at Mount Sinai, Arizona State University and NIH/National Institute on Aging.

Neuron, Readhead et al.: "Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus" http://www.cell.com/neuron/fulltext/S0896-6273(18)30421-5

Neuron (@NeuroCellPress), published by Cell Press, is a bimonthly journal that has established itself as one of the most influential and relied upon journals in the field of neuroscience and one of the premier intellectual forums of the neuroscience community. It publishes interdisciplinary articles that integrate biophysical, cellular, developmental, and molecular approaches with a systems approach to sensory, motor, and higher-order cognitive functions. Visit: http://www.cell.com/neuron. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.