Antarctic ice sheet is melting, but rising bedrock below could slow it down

June 21, 2018

An international team, led by DTU Space at the Technical University of Denmark with Colorado State University, has found that the bedrock below the remote West Antarctic Ice Sheet is rising much more rapidly than previously thought, in response to ongoing ice melt.

The study, "Observed rapid bedrock uplift in the Amundsen Sea Embayment promotes ice-sheet stability," reveals new insights on the geology of the region and its interaction with the ice sheet and is published in the journal Science. The authors noted that the findings have important implications in understanding and predicting the stability of the ice sheet and Earth's rising sea levels.

"We studied a surprising and important mechanism, glacial isostatic adjustment, that may slow the demise of the massive West Antarctic Ice Sheet by lifting up the bedrock and sediments beneath the ice sheet," explained CSU Professor Rick Aster, a co-author of the study and head of the Department of Geosciences at the university.

Scientists have been concerned that this ice sheet is particularly precarious in the face of a warming climate and ocean currents, because it is grounded hundreds to thousands of feet below sea level -- unlike the ice sheets of East Antarctica or Greenland -- and its base slopes inland. This bowl-like topography makes it susceptible to runaway destabilization and even complete collapse over centuries to thousands of years.

The entirety of West Antarctica contains enough ice that, if it were to melt, would contribute more than 10 feet of average global sea level rise. In addition, the ice sheet is so massive that it gravitationally attracts an ocean bulge that, if released, would lead to an additional increase of three feet or more to sea level in parts of the northern hemisphere.

The West Antarctic Ice Sheet is currently contributing approximately 25 percent of global melting land-based ice each year, and recent satellite-based studies have shown that this amount has increased in recent decades. This figure is equivalent to about 37 cubic miles or a cube of over three miles on each side.

Co-authors of the study based at The Ohio State University led the installation of sensitive GPS stations on rock outcrops around the remote region to measure the regional uplift of the Earth in response to the thinning ice sheet. Measurements showed that the bedrock uplift rates near the coast of West Antarctica were as high as 1.6 inches per year, one of the fastest rates ever recorded in glacial areas.

"This very rapid uplift may slow the runaway wasting and eventual collapse of the ice sheet," said Aster. "The uplift tends to stabilize the critical grounding line where the ice sheet loses contact with underlying bedrock or sediment and goes afloat," he explained. This grounding line then counteracts the process of the ice sheet collapsing.

Researchers also found that the uplift is accelerating and predicted that it will continue to do so into the next century.

"Our research indicates that recent and ongoing ice loss in the region has been underestimated by approximately 10 percent in past studies, because this bedrock uplift was inadequately accounted for in satellite measurements," said Aster.

Lead author Valentina Barletta, a postdoctoral researcher at DTU Space, Technical University of Denmark, said that this uplift is occurring very rapidly, when compared with other regions of the Earth where glaciers are melting.

"Normally we would see this type of uplift happening slowly, over thousands of years after an ice age," said Barletta. "What we found tells us that Earth's underlying viscous mantle is relatively fluid and flows relatively quickly when the weight of the ice is taken off," she added.

Terry Wilson, professor emeritus of Earth Sciences at The Ohio State University, said the rapid rise of the bedrock in this part of Antarctica suggests that the geological conditions beneath the ice are very different from what scientists had previously believed.

"The rate of uplift we found is unusual and very surprising," he said. "It's a game changer."

Aster, Barletta and the study co-authors have also deployed a large network of sensitive seismographs across Antarctica to produce seismic tomographic images -- analogous to a gigantic CAT scan -- of the deep Earth below Antarctica.

This work assisted in the interpretation and modeling of the GPS uplift data by providing detailed mapping of a vast region of Earth's mantle up to 400 miles below West Antarctica.

Previous and related studies conducted by the research team have also revealed that some hotter features below Antarctica extend still deeper, over 600 miles, into the Earth.

"These warmer mantle features drive the previously enigmatic volcanic activity in West Antarctica, including Mount Erebus on Ross Island," said Aster. "This geothermal heat at the base of the ice sheet helps to sustain subglacial lakes in some regions and lubricates the ice sheet as it slips towards the ocean," he added.

Aster said that while the research does provide room for a positive outcome, if future global warming is extreme, the entire West Antarctic Ice Sheet will still melt.

"To keep global sea levels from rising more than a few feet during this century and beyond, we must still limit greenhouse gas concentrations in the atmosphere, which can only occur through international cooperation and innovation," he said.
-end-


Colorado State University

Related Ice Sheet Articles from Brightsurf:

Greenland ice sheet shows losses in 2019
The Greenland Ice Sheet recorded a new record loss of mass in 2019.

Warming Greenland ice sheet passes point of no return
Nearly 40 years of satellite data from Greenland shows that glaciers on the island have shrunk so much that even if global warming were to stop today, the ice sheet would continue shrinking.

Greenland ice sheet meltwater can flow in winter, too
Liquid meltwater can sometimes flow deep below the Greenland Ice Sheet in winter, not just in the summer, according to CIRES-led work published in the AGU journal Geophysical Research Letters today.

Ice sheet melting: Estimates still uncertain, experts warn
Estimates used by climate scientists to predict the rate at which the world's ice sheets will melt are still uncertain despite advancements in technology, new research shows.

Thousands of meltwater lakes mapped on the east Antarctic ice sheet
The number of meltwater lakes on the surface of the East Antarctic Ice Sheet is more significant than previously thought, according to new research.

Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.

A clearer picture of global ice sheet mass
Fluctuations in the masses of the world's largest ice sheets carry important consequences for future sea level rise, but understanding the complicated interplay of atmospheric conditions, snowfall input and melting processes has never been easy to measure due to the sheer size and remoteness inherent to glacial landscapes.

Researchers discover more than 50 lakes beneath the Greenland Ice Sheet
Researchers have discovered 56 previously uncharted subglacial lakes beneath the Greenland Ice Sheet bringing the total known number of lakes to 60.

Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.

Novel hypothesis goes underground to predict future of Greenland ice sheet
The Greenland ice sheet melted a little more easily in the past than it does today because of geological changes, and most of Greenland's ice can be saved from melting if warming is controlled, says a team of Penn State researchers.

Read More: Ice Sheet News and Ice Sheet Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.