Nav: Home

UBC researchers create matchmaking service

June 21, 2018

UBC researchers have matched small proteins, called peptides, with antibiotics so they can work together to combat hard-to-treat infections that don't respond well to drugs on their own.

The study builds on previous research that showed that the peptides are key to making harmful bacteria more responsive to drugs.

"We had developed information from earlier experiments that showed there was some good synergy between peptides and conventional antibiotics," said Bob Hancock, the senior author of the paper and a professor of microbiology and immunology at UBC. "It was our idea that maybe we could breathe some life back into antibiotics by adding peptides and thus make antibiotics work in infections where they weren't working well before."

The study aimed to find new treatments for infections caused by antimicrobial resistant bacteria including Escherichia coli and the so-called ESKAPE pathogens, a group named from the first-letter of six bacteria species: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter. These infections collectively account for more than 60 per cent of all hospital infections, manifesting as abscesses in the skin or infections in internal tissues like the lungs or urinary tract.

Most antibiotics are designed to work on bacteria that are swimming freely in the body. However, in the majority of infections, bacteria grow together on body surfaces in massive communities known as biofilms, shielded by a protective structure. Together, biofilm bacteria adapt to stress by learning to resist the immune system and chemicals, making them extremely resistant to antibiotics and difficult to treat.

The peptides help several antibiotics to work by removing the bacteria's ability to respond to stress and form these resistant communities. To find the best combination of peptide and drug, the researchers tested different options in a laboratory setting. Once they identified possible mixtures, they tested them in mice with abscesses on their skin. In total, they found seven combinations that worked better than antibiotics on their own.

"Not every combination will work and it required lots of testing to find the right combinations of peptides and antibiotic to treat the dense infections in skin abscesses," said Daniel Pletzer, lead author of the study and postdoctoral fellow in the department of microbiology and immunology.

When the peptides worked in combination with the drugs, the researchers observed a reduction in the size of the abscess in mice and the number of bacteria in the infection area. The combinations offered up to 100-fold improvement.

The results are particularly important for patients with cystic fibrosis who often deal with dense, chronic infections in the lungs. The disease causes mucus to build up around tissues, creating an ideal environment for bacteria to form biofilms and thrive.
-end-
The researchers are hoping to commercialize this treatment and have licensed the peptides to ABT Innovations, a UBC-spinoff company owned by Hancock.

Hancock, a university Killam professor, and Pletzer worked on this study with Sarah Mansour, a PhD candidate at UBC. The research was funded by Cystic Fibrosis Canada, a Canadian Institutes of Health Research Foundation grant, the Canada Research Chair program and the Alexander von Humboldt Foundation. The study was published today in PLOS Pathogens: https://doi.org/10.1371/journal.ppat.1007084.

University of British Columbia

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Graham
If former Minneapolis police officer Derek Chauvin's case for the death of George Floyd goes to trial, there will be this one, controversial legal principle looming over the proceedings: The reasonable officer. In this episode, we explore the origin of the reasonable officer standard, with the case that sent two Charlotte lawyers on a quest for true objectivity, and changed the face of policing in the US. This episode was produced by Matt Kielty with help from Kelly Prime and Annie McEwen. Support Radiolab today at Radiolab.org/donate.