Nav: Home

Water can be very dead, electrically speaking

June 21, 2018

In a study published in Science this week, the researchers describe the dielectric properties of water that is only a few molecules thick. Such water was previously predicted to exhibit a reduced electric response but it remained unknown by how much. The new study shows that atomically thin layers of water near solid surfaces do not respond to an electric field, a finding that has very important implications for understanding of many phenomena where water is involved, including life of course.

Water molecules are small and seemingly simple but nonetheless exhibit rather complex properties, many of which remain poorly understood. Among them is the ability of water to dissolve substances much better than any other solvent. Water is therefore known as the "universal" solvent.

Behind this solvation ability is the fact that water molecules behave like tiny dipoles with two opposite charges placed at the ends of the molecule. This makes it easy for water to dissolve salts and sugars whereas substances like oils are repelled. The dipolar properties of water - or, as scientists call it, the polarizability - also play an important role in the structuring of the molecules of life, proteins and nucleic acids. Therefore, it is hardly surprising that for many decades scientists tried to figure out how water behaves on a microscopic scale, in the immediate vicinity of other substances, solid surfaces and macromolecules.

The quest has finally succeeded due to collaborative efforts of the groups of Dr Laura Fumagalli and Dr Andre Geim at the National Graphene Institute, the University of Manchester. They combined two recently developed technologies. First, the researchers created special channels that were down to several angstroms in size and accommodated only a few layers of water. Second, they introduced a technique capable to probe water's dielectric constant inside such nanochannels.

Fumagalli who is the lead author and developed the measurement technique explained "The existence of a low-polarizable water layer near surfaces is central to many scientific disciplines, and its nature has been much debated for almost a century. To resolve the debate, it was necessary to develop new tools to controllably measure the dielectric constant on a very small scale. We have done this."

The researchers have found that the electric response of the confined water is not only suppressed but completely absent. In other words, the water inside nanochannels was electrically dead with its dipoles immobilized and unable to screen an external field. This is in contrast to bulk water whose molecules easily align along an electric field. The thickness of the dead layer was found to be less than one nanometer, two to three molecules thick.

Fumagalli commented "Water covers every surface around us. This layer is only a few atoms thick. We don't see it but it is there and important. Until now, this surface water was presumed to behave differently from the normal water famous for its anomalously high dielectric constant. How different, it was not known. It was a surprise to find that the dielectric constant of interfacial water was anomalous, too. However its polarizability is anomalously low rather than anomalously high."

Geim added "This anomaly is not just an academic curiosity but has clear implications for many fields and for life sciences, in particular. Our results can help to improve the understanding of the role of water in technological processes, and why it is so crucial for life. Electric interactions with water molecules play an important role in shaping biological molecules such as proteins. One can probably claim that interfacial water shapes the life as we know it, both literally and figuratively."
-end-
Notes for Editors

The work was done in collaboration with a group led by Prof Gabriel Gomila at the University of Barcelona (Spain) who carried out computer simulations and a group led by Prof K. Watanabe at the National Institute for Materials Science (Japan) who provided hexagonal boron nitride crystals.

The work was supported by Engineering and Physical Sciences Research Council, Lloyd's Register Foundation, Royal Society, Graphene Flagship, European Research Council, Ministerio de Industria, Economia y Competitividad (MINECO) and ICREA Academia Award.

The paper, Anomalously low dielectric constant of confined water, by L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, B. Radha, T. Taniguchi, K. Watanabe, G. Gomila, K. S. Novoselov, A. K. Geim, is available from the Press Office.

Images and more information can be found at http://www.graphene.manchester.ac.uk

For media enquiries please contact:

Charlotte Powell
Graphene Communications and Marketing Assistant
The University of Manchester
0161 306 1401
charlotte.powell@manchester.ac.uk
http://www.graphene.manchester.ac.uk
http://www.manchester.ac.uk
Twitter: @UoMGraphene

University of Manchester

Related Water Molecules Articles:

Breaking water molecules apart to generate clean fuel: Investigating a promising material
Scientists at the Tokyo Institute of Technology (Tokyo Tech) investigated a material that uses sunlight for splitting water molecules (H2O) to obtain dihydrogen (H2).
Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
There are no water molecules between the ions in the selectivity filter of potassium
Do only potassium ions pass through the selectivity filter of a potassium channel, or are there water molecules between the ions?
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
Using water molecules to unlock neurons' secrets
EPFL researchers have developed a method to observe the electrical activity of neurons by analyzing the behavior of surrounding water molecules.
Molecular adlayer produced by dissolving water-insoluble nanographene in water
Even though nanographene is insoluble in water and organic solvents, Kumamoto University and Tokyo Institute of Technology researchers have found a way to dissolve it in water.
Water-worlds are common: Exoplanets may contain vast amounts of water
Scientists have shown that water is likely to be a major component of those exoplanets (planets orbiting other stars) which are between two to four times the size of Earth.
How ions gather water molecules around them
Charged particles in aqueous solutions are always surrounded by a shell of water molecules.
More Water Molecules News and Water Molecules Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.