Nav: Home

Psychiatric disorders share an underlying genetic basis

June 21, 2018

Psychiatric disorders such as schizophrenia and bipolar disorder often run in families. In a new international collaboration, researchers explored the genetic connections between these and other disorders of the brain at a scale that far eclipses previous work on the subject. The team determined that psychiatric disorders share many genetic variants, while neurological disorders (such as Parkinson's or Alzheimer's) appear more distinct.

Published today in Science, the study takes the broadest look yet at how genetic variation relates to brain disorders. The results indicate that psychiatric disorders likely have important similarities at a molecular level, which current diagnostic categories do not reflect.

The study was led by co-senior authors Ben Neale, director of population genetics in the Stanley Center at Broad Institute of MIT and Harvard and a faculty member in the Analytical and Translational Genetics Unit at Massachusetts General Hospital, and Aiden Corvin, professor at Trinity College Dublin, with first author Verneri Anttila, a postdoctoral research fellow in Neale's lab. The team further includes researchers from more than 600 institutions worldwide.

"This work is starting to re-shape how we think about disorders of the brain," says Neale. "If we can uncover the genetic influences and patterns of overlap between different disorders, then we might be able to better understand the root causes of these conditions -- and potentially identify specific mechanisms appropriate for tailored treatments."

Exploring these biological connections is challenging. The brain is a tricky organ to study directly, difficult to scan in detail or ethically biopsy. And, because brain disorders often co-occur, it's hard to untangle when one might be affecting the development of another.

To examine the biological overlap between these disorders, researchers must rely on genetics. For the current study, international consortia pooled their data to examine the genetic patterns across 25 psychiatric and neurological diseases. Because each genetic variant only contributes a tiny percentage of the risk for developing a given disorder, the analyses required huge sample sizes to separate reliable signals from noise.

The researchers measured the amount of genetic overlap across the disorders using genome-wide association studies (GWAS) of 265,218 patients and 784,643 controls. They also examined the relationships between brain disorders and 17 physical or cognitive measures, such as years of education, from 1,191,588 individuals. The dataset ultimately included all GWAS consortia studying common brain disorders that the team could identify with sufficient sample sizes.

"This was an unprecedented effort in sharing data, from hundreds of researchers all around the world, to improve our understanding of the brain," says Anttila.

The final results indicated widespread genetic overlap across different types of psychiatric disorders, particularly between attention-deficit/hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder, and schizophrenia. The data also indicated strong overlap between anorexia nervosa and obsessive-compulsive disorder (OCD), as well as between OCD and Tourette syndrome.

In contrast, neurological disorders such as Parkinson's and multiple sclerosis appeared more distinct from one another and from the psychiatric disorders -- except for migraine, which was genetically correlated to ADHD, major depressive disorder, and Tourette syndrome.

According to the researchers, the high degree of genetic correlation among the psychiatric disorders suggests that current clinical categories do not accurately reflect the underlying biology. "The tradition of drawing these sharp lines when patients are diagnosed probably doesn't follow the reality, where mechanisms in the brain might cause overlapping symptoms," says Neale.

As a hypothetical example, a single mechanism regulating concentration could drive both inattentive behavior in ADHD and diminished executive function in schizophrenia. Further exploration of these genetic connections could help define new clinical phenotypes and inform treatment development and selection for patients.

Additionally, within the cognitive measures, the researchers were surprised to note that genetic factors predisposing individuals to certain psychiatric disorders -- namely anorexia, autism, bipolar, and OCD -- were significantly correlated with factors associated with higher childhood cognitive measures, including more years of education and college attainment. Neurological disorders, however, particularly Alzheimer's and stroke, were negatively correlated with those same cognitive measures.

"We were surprised that genetic factors of some neurological diseases, normally associated with the elderly, were negatively linked to genetic factors affecting early cognitive measures. It was also surprising that the genetic factors related to many psychiatric disorders were positively correlated with educational attainment," says Anttila. "We'll need more work and even larger sample sizes to understand these connections."

The consortia have made their GWAS data accessible online, either freely available for download or by application. They plan to examine additional traits and genetic variants to explore these patterns further, aiming to discover the relevant mechanisms and pathways that underlie and potentially link these disorders.
-end-
Paper cited

The Brainstorm Consortium. Analysis of shared heritability in common disorders of the brain. Science. Online June 21, 2018. DOI: 10.1126/science.aap8757

About the Broad Institute of MIT and Harvard

Broad Institute of MIT and Harvard was launched in 2004 to empower this generation of creative scientists to transform medicine. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods, and data openly to the entire scientific community.

Founded by MIT, Harvard, Harvard-affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff, and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to http://www.broadinstitute.org.

Broad Institute of MIT and Harvard

Related Bipolar Disorder Articles:

Underlying molecular mechanism of bipolar disorder revealed
Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP), with major participation from Yokohama School of Medicine, Harvard Medical School, and UC San Diego, have identified the molecular mechanism behind lithium's effectiveness in treating bipolar disorder patients.
Researchers develop online support for people with bipolar disorder
An online relapse prevention tool for bipolar disorder offers a 'cheap accessible option' for people seeking support following treatment, say researchers.
Bipolar disorder candidate gene, validated in mouse experiment
Researchers at Ulsan National Institute of Science and Technology (UNIST) in South Korea has made a significant breakthrough in the search for the potential root causes of bipolar disorder.
Novel risk genes for bipolar disorder
A research collaboration in Japan, led by Dr. Nakao Iwata, professor at the Fujita Health University, conducted a genome-wide association study of bipolar disorder (BD), and identified novel risk genes.
People with bipolar disorder more than twice as likely to have suffered child adversity
A University of Manchester study which looked at more than thirty years of research into bipolar, found that people with the disorder are 2.63 times more likely to have suffered emotional, physical or sexual abuse as children than the general population.
Brain structural effects of psychopharmacological treatment in bipolar disorder
Bipolar disorder is associated with subtle neuroanatomical deficits. This review considers evidence that lithium, mood stabilizers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation.
Changes in brain connectivity protect against developing bipolar disorder
Naturally occurring changes in brain wiring can help patients at high genetic risk of developing bipolar disorder avert the onset of the illness, according to a new study led by researchers at the Icahn School of Medicine at Mount Sinai and published online today in the journal Translational Psychiatry.
Possible mechanism for specific symptoms in bipolar disorder discovered
Researchers at Karolinska Institutet, and the Sahlgrenska Academy at Gothenburg University in Sweden have identified a gene variant linked to psychotic symptoms and cognitive impairment in people with bipolar disorder.
Certain antidepressants linked to heightened risk of mania and bipolar disorder
Taking certain antidepressants for depression is linked to a heightened risk of subsequent mania and bipolar disorder, reveals research published in the online journal BMJ Open.
Lithium safe, effective for children with bipolar disorder
A multicenter study of young patients with bipolar disorder provides what may be the most scientifically rigorous demonstration to date that lithium -- a drug used successfully for decades to treat adults with the condition -- can also be safe and effective for children suffering from it.

Related Bipolar Disorder Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".