Nav: Home

First ancient syphilis genomes decoded

June 21, 2018

An international research team, including scientists from the Max Planck Institute for the Science of Human History, the University of Tübingen, the National School of Anthropology and History in Mexico City, and the University of Zurich, has recovered the first historic genomes from the bacterium Treponema pallidum, which causes syphilis. It was previously not thought possible to recover DNA of this bacterium from ancient samples, so the success of this study opens up the possibility of directly studying the evolution and origin of this reemerging disease. In the study, published in PLOS Neglected Tropical Diseases, the researchers were able to distinguish genetically between the subspecies of the disease that cause syphilis and that cause yaws. Though the diseases cause different effects in living persons, they are not readily distinguishable in skeletal remains, which had previously hampered study of the disease.

Treponema pallidum is a bacterium that affects humans worldwide, causing, among other diseases, syphilis and yaws. In particular, sexually transmitted syphilis is regarded as a re-emerging infectious disease, with millions of new infections reported annually. Despite its historical significance, the evolution and origin of syphilis, and other treponemal diseases, is not well understood. In particular, a 15th century syphilis pandemic in Europe has led to debate regarding whether the disease originated in the New World or the Old World. Because the different treponemal diseases leave similar signs on skeletal remains, it was not previously possible to definitively examine syphilis cases in the past.

In the current study, the researchers examined five individuals whose remains were recovered from the former Convent of Santa Isabel, a historical site located in downtown Mexico City used by nuns of the Franciscan Order from 1681 to 1861. The remains were selected based on skeletal features which suggested a treponemal disease. Three of the individuals tested positive for treponemal DNA. As with 90% of the individuals from the cemetery, the three individuals were infants, one likely pre-term. They were all buried in the colonial era, around 350 years ago.

The first ancient syphilis genomes reconstructed

Whole T. pallidum genomes were recovered from all three individuals, and the researchers were able to determine that two of the individuals carried subspecies T. pallidum ssp. pallidum (which causes syphilis) and one T. pallidum ssp. pertenue (which causes yaws). The distinction between yaws and syphilis was not discernable from the morphological evidence alone. The researcher's findings show that both reconstructed sub-species of T. pallidum can present similar symptoms but can be differentiated genetically in ancient samples. "Our work demonstrates the value of molecular identification of ancient pathogens, particularly as applied to treponemal diseases where skeletal responses to the various pathogenic subspecies are often shared, challenging the development of a confident diagnosis through osteological observation," explains Verena Schuenemann of the University of Zurich, first author of the paper.

The origins of syphilis?

The research begins to shed light on the evolutionary history of the disease. Some researchers have hypothesized that syphilis was a New World disease that was introduced to Europe during the colonial era. Others suggest that it was already widespread in human populations prior to the 15th century pandemic. The current findings complicate the hypotheses. "Previous research that found the presence of T. pallidum ssp. pertenue in old world monkeys, and our finding that two T. pallidum subspecies likely caused similar skeletal manifestations in the past, may suggest a more complex evolutionary history of T. pallidum than previously assumed," states Alexander Herbig of the Max Planck Institute for the Science of Human History and co-corresponding author.

This first reconstruction of T. pallidum genomes from archaeological material opens the possibility of studying its evolutionary history at a resolution previously assumed to be out of reach. "Further investigation of additional ancient samples from around the world will help to refine our understanding of this disease," notes Johannes Krause, also of the Max Planck Institute for the Science of Human History and co-corresponding author.
-end-


Max Planck Institute for the Science of Human History

Related Bacterium Articles:

The cholera bacterium can steal up to 150 genes in one go
EPFL scientists have discovered that predatory bacteria like the cholera pathogen can steal up to 150 genes in one go from their neighbors.
Exploiting green tides thanks to a marine bacterium
Ulvan is the principal component of Ulva or 'sea lettuce' which causes algal blooms (green tides).
The cholera bacterium's 3-in-1 toolkit for life in the ocean
The cholera bacterium uses a grappling hook-like appendage to take up DNA, bind to nutritious surfaces and recognize 'family' members, EPFL scientists have found.
Excellent catering: How a bacterium feeds an entire flatworm
In the sandy bottom of warm coastal waters lives Paracatenula -- a small worm that has neither mouth, nor gut.
Russian scientists found out how a male-hating bacterium rejuvenates
A team from Immanuel Kant Baltic Federal University together with their Russian colleagues carried out genetic analysis of the symbiotic bacterium Wolbachia that prevents the birth and development of males in different species of arthropods.
Cancer prevention drug also disables H. pylori bacterium
A medicine currently being tested as a chemoprevention agent for multiple types of cancer has more than one trick in its bag when it comes to preventing stomach cancer, Vanderbilt researchers have discovered.
A social bacterium with versatile habits
Related individuals of a soil bacterial species live in cooperative groups and exhibit astonishing genetic and behavioral diversity.
Novel potent antimicrobial from thermophilic bacterium
University of Groningen microbiologists and their colleagues from Lithuania have discovered a new glycocin, a small antimicrobial peptide with a sugar group attached, which is produced by a thermophilic bacterium and is stable at relatively high temperatures.
How a certain bacterium communicates and makes us sick
Researchers at Binghamton University, State University of New York have uncovered the unique way in which a type of Gram-negative bacterium delivers the toxins that make us sick.
The potentially deadly bacterium that's on everyone's skin
Forget MRSA and E. coli, there's another bacterium that is becoming increasingly dangerous due to antibiotic resistance -- and it's present on the skin of every person on the planet.
More Bacterium News and Bacterium Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.