Nav: Home

'Antifreeze' molecules may stop and reverse damage from brain injuries

June 21, 2018

PHILADELPHIA - The key to better treatments for brain injuries and disease may lie in the molecules charged with preventing the clumping of specific proteins associated with cognitive decline and other neurological problems, researchers from the Perelman School of Medicine at the University of Pennsylvania report in a new study published in Neurobiology of Disease.

Concentrations of these brain molecules - called N-acetylaspartate (NAA) - are known to decrease when people suffer from brain injuries and diseases. While NAA has historically been used as a marker of disease, its primary role in the brain has remained a mystery. Now, Penn neuroscience researchers have shown how NAA wedges in between the folds of amyloid-beta fibrils to inhibit them from locking, folding, and clumping together to create harmful amyloid plaques.

"For decades, NAA has been viewed as simply a marker of injury when in fact it could be a part of the rescue process," said senior author Douglas H. Smith, MD, director of the Center for Brain Injury and Repair and professor of Neurosurgery in Penn's Perelman School of Medicine. "We found that it's a type of brain 'antifreeze' that works to pause and even reverse the aggregation or misfolding of amyloid-beta proteins, which occurs after a brain injury. In this way, it may protect the brain."

NAA is one of the most abundant amino acids in the brain, and has the highest concentration in neurons. After a traumatic brain injury (TBI), scans from proton magnetic resonance spectroscopy consistently show an approximately 20 percent reduction in NAA in patients' white matter, the authors note. This is followed by the rapid clumping of amyloid-beta proteins to form amyloid plaques, which are found in a large number of TBI patients who die shortly after injury--similar to the hallmark pathology of Alzheimer's disease.

A number of strategies to reduce amyloid-beta aggregation, such as immunotherapy and beta secretase inhibitors, have been attempted over the years, but none of them have proved to be clinically successful. This new study suggests that restoring NAA to normal levels after head trauma or in neurological diseases, like Alzheimer's, could block the progression of amyloid pathologies.

Using human amyloid-beta samples in the lab, the team demonstrated that concentrations of NAA substantially impaired amyloid-beta clumping. Its possible NAA is creating "peptide backbones," the authors said--the NAA inserts itself between layers of amyloid-beta clumps and protofibrils, preventing the formation of mature amyloid fibrils. The researchers used several different techniques to determine NAA's role, including Thioflavin T dye fluorescence, which is used regularly to quantify the formation and inhibition of amyloids.

Electron microscopy also confirmed the absence of mature fibrils following the NAA treatment. The NAA may be stabilizing the smaller fibrils and preventing further organization into elongated, more mature ones, the authors speculated.

The researchers also showed that the addition of NAA can even reverse the clumping. After 25 minutes, NAA added to the amyloid-beta aggregation started to break down the pre-formed amyloid fibrils. This work may have important implications for the treatment of TBI and neurodegenerative disorders.

"We show a new and potentially significant biological function of NAA in the brain, as a surprisingly effective agent for inhibiting and even reversing aggregation of amyloid-beta," said lead author Jean-Pierre Dolle?, PhD, of the Penn Center for Brain Injury and Repair. "This tells us a lot about brain injury and neurodegeneration, and points us to possible therapies to stop it. These findings support the start of a new line of research to reveal potential mechanisms of NAA interactions with amyloid-beta in patients."
-end-
Penn co-authors include Jean-Pierre Dolle?, Jeffrey M. Rodgers, Kevin D. Browne, Thomas Troxler, and Feng Gai. The study was supported with grants from the Paul G. Allen Family Foundation, the National Institutes of Health (NS092398, NS038104, P41-GM104605), and the Pennsylvania Consortium on Traumatic Brain Injury (4100077083).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $405 million awarded in the 2017 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; Penn Wissahickon Hospice; and Pennsylvania Hospital - the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine, and Princeton House Behavioral Health, a leading provider of highly skilled and compassionate behavioral healthcare.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2017, Penn Medicine provided $500 million to benefit our community.

University of Pennsylvania School of Medicine

Related Brain Injury Articles:

Brain injury causes impulse control problems in rats
New research from the University of British Columbia confirms for the first time that even mild brain injury can result in impulse control problems in rats.
Which kids will take longer to recover from brain injury?
A new biomarker may help predict which children will take longer to recover from a traumatic brain injury (TBI), according to a preliminary study published in the March 15, 2017, online issue of Neurology, the medical journal of the American Academy of Neurology.
Researchers identify how inflammation spreads through the brain after injury
Researchers have identified a new mechanism by which inflammation can spread throughout the brain after injury.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
Therapy for abnormal heartbeats may cause brain injury
A common treatment for irregular heartbeats known as catheter ablation may result in the formation of brain lesions when it is performed on the left side of the heart, according to new research at UC San Francisco.
How brain tissue recovers after injury
A Kobe University research team has pinpointed the mechanism underlying astrocyte-mediated restoration of brain tissue after an injury.
Depression in soldiers linked to brain disruption from injury
Using multiple brain imaging techniques, researchers have found that a disruption of the circuitry in the brain's cognitive-emotional pathways may provide a physical foundation for depression symptoms in some service members who have suffered mild traumatic brain injury in combat.
Research finds brain changes, needs to be retrained after ACL injury
A new study shows that when you injure your knee, it changes your brain -- which could put you at risk for further injuries.
The effectiveness of treatment for individuals with brain injury or stroke
In the current issue of NeuroRehabilitation leading researchers explore the effectiveness of several neurorehabilitation treatments for individuals with brain injury or stroke.
Allen Institute releases powerful new data on the aging brain and traumatic brain injury
The Allen Institute for Brain Science has announced major updates to its online resources available at brain-map.org, including a new resource on Aging, Dementia and Traumatic Brain Injury in collaboration with UW Medicine researchers at the University of Washington, and Group Health.

Related Brain Injury Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".