Nav: Home

Template to create superatoms, created by VCU researchers, could make for better batteries

June 21, 2018

Virginia Commonwealth University researchers have discovered a novel strategy for creating superatoms -- combinations of atoms that can mimic the properties of more than one group of elements of the periodic table. These superatoms could be used to create new materials, including more efficient batteries and better semiconductors; a core component of microchips, transistors and most computerized devices.

Batteries and semiconductors rely on the movement of charges from one group of atoms to another. During this process, electrons are transferred from donor atoms to acceptor atoms. Forming superatoms that can supply or accept multiple electrons while maintaining structural stability is a key requirement for creating better batteries or semiconductors, said Shiv Khanna, Ph.D., Commonwealth Professor and chair of the Department of Physics in the College of Humanities and Sciences. The ability of superatoms to effectively move charges while staying intact is attributed to how they mimic the properties of multiple groups of elements.

"We have devised a new approach in which one can synthesize such metal-based superatoms," Khanna said.

In a paper published in Nature Communications last week, Khanna theoretically proved a method of building superatoms that could result in the creation of more effective energetic materials. The work was funded by the Air Force Office of Scientific Research.

"Semiconductors are used in every sphere of life," Khanna said. "Superatoms that could substantially enhance electron donation would be a significant societal benefit."

Currently, alkali atoms, which form the first column of the periodic table, are optimal for donating electrons. These naturally occurring atoms require a low amount of energy to donate an electron. However, donating more than one electron requires a prohibitively high amount of energy.

Khanna and colleagues Arthur Reber, associate professor of physics, and Vikas Chauhan, a postdoctoral fellow in the Department of Physics, have created a process by which clusters of atoms can donate or receive multiple electrons using low levels of energy.

"The possibility of having these building blocks that can accept multiple charges or donate multiple charges would eventually have wide-ranging applications in electronics," Khanna said.

While such superatoms already have been made, there has never been a guiding theory for doing so effectively. Khanna and his colleagues theorize that organic ligands -- molecules that bind metal atoms to protect and stabilize them -- can improve the exchange of electrons without compromising energy levels.

They considered this theory using groups of aluminum clusters mixed with boron, carbon, silicon and phosphorous, paired with organic ligands. Using computational analysis, they demonstrated the cluster would use even less energy to donate an electron than francium, the strongest naturally occurring alkali electron donor.

"We could use ligands to take any cluster of atoms and turn it into either a donor or acceptor of electrons," Khanna said. "We could form electron donors that are stronger than any element found on the periodic table."
-end-


Virginia Commonwealth University

Related Electrons Articles:

Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
Inner electrons behave differently in aromatic hydrocarbons
In an international research collaboration between Tsinghua University in Beijing and Sorbonne University in Paris, scientists found that four hydrocarbon molecules, known for their internal ring structure, have a lower threshold for the release of excess energy than molecules without a similar ring structure, because one of their electrons decays from a higher to a lower energy level, a phenomenon called the Auger effect.
Exotic spiraling electrons discovered by physicists
Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.
Racing electrons under control
The advantage is that electromagnetic light waves oscillate at petaherz frequency.
Electrons go with the flow
You turn on a switch and the light switches on because electricity 'flows'.
Tying down electrons with nanoribbons
Nanoribbons are promising topological materials displaying novel electronic properties. UC Berkeley chemists and physicists have found a way to join two different types of nanoribbon to create a topological insulator that confines single electrons to the junction between them.
More Electrons News and Electrons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.