Nav: Home

Starving fungi could save millions of lives each year

June 21, 2018

Researchers have identified a potentially new approach to treating lethal fungal infections that claim more than 1.6 million lives each year: starving the fungi of key nutrients, preventing their growth and spread.

The team from the Westmead Institute for Medical Research found that stopping fungi from producing transporters that carry essential nutrients, like phosphate, starved the fungi.

Despite high levels of phosphate in the human body, the research showed that the infecting fungi are very poor at absorbing it. This causes the fungi to produce more transporters to try to bring in more phosphate - a process known as the 'phosphate starvation response'.

By blocking this phosphate starvation response - and stopping the fungi from producing more transporters to get more nutrients - the research team starved the fungi, preventing their spread of infection in mice.

Lead researcher, Associate Professor Julianne Djordjevic, is optimistic this discovery will provide a new avenue to develop safer and urgently needed antifungal drugs.

"Death rates due to fungal infections are similar to those of tuberculosis and greater than those due to malaria," Associate Professor Djordjevic said.

"Current antifungal drugs are toxic, poorly absorbed by the body, and not fully effective. Drug-resistance is also emerging as a serious problem.

"Although new therapies are desperately needed to reduce the high global morbidity and mortality of infectious fungal diseases, no new classes of drug have been introduced into clinical medicine since 1986.

"If we can stop fungi from absorbing nutrients during infection, this could provide a novel treatment avenue for fungal infections. This is particularly important in patients with weakened immune systems, such as those with HIV/AIDS or leukaemia, and in organ transplant recipients who require life-long immunosuppressive therapy," she said.

The first author on the study, Dr Sophie Lev, expanded the findings using bioinformatics.

"We found that the phosphate starvation response in fungal pathogens has expanded its function to transport other essential nutrients, like sugars and amino acids, not just phosphate. We also identified that this starvation response occurs because phosphate transporters do not function properly at human pH.

"The combined effect of poor nutrient absorption at human body pH and the expanded nutrient starvation response means that blocking this response could be the key to starving fungi of a range of key nutrients and treating these potentially lethal infections," Dr Lev said.

"This finding is particularly exciting, because we may not need to start from scratch to identify drugs that block the fungal nutrient starvation response.

"FDA-approved drugs like Foscarnet, which are used to treat viral infections in transplant patients, have been shown to inhibit the phosphate starvation response in fungi.

"When used in combination with antifungal drugs prescribed in the clinic, these drugs work more effectively, reducing treatment dose and potentially side effects," Dr Lev concluded.
-end-


Westmead Institute for Medical Research

Related Amino Acids Articles:

Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Metabolic reprogramming of branched-chain amino acid facilitates drug resistance in lung cancer
Research teams led by Dr. Ji Hongbin at the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences, Dr.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
Characterisation of the structure of a member of the L-Amino acid Transporter (LAT) family
Mutations in L-amino acid transporters (LATs) can lead to a wide range of conditions, such as autism, hearing loss and aminoacidurias.
Model learns how individual amino acids determine protein function
A machine-learning model from MIT researchers computationally breaks down how segments of amino acid chains determine a protein's function, which could help researchers design and test new proteins for drug development or biological research.
More Amino Acids News and Amino Acids Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...