Nav: Home

Next-gen solar cells spin in new direction

June 21, 2019

A nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells (PSCs).

PSCs which are one of the fastest developing new solar technologies and can achieve efficiencies comparable to more commonly used commercially available silicon solar cells.

For the first time, an international team of clean chemistry researchers led by Professor Joseph Shapter and Flinders University, has made very thin phosphorene nanosheets for low-temperature PSCs using the rapid shear stress of the University's revolutionary vortex fluidic device (VFD).

"Silicon is currently the standard for rooftop solar, and other solar panels, but they take a lot of energy to produce them. They are not as sustainable as these newer options," says adjunct Professor Shapter, now at University of Queensland.

"Phosphorene is an exciting material because it is a good conductor that will absorb visible light. In the past most non-metallic materials would have one property but not both," he says.

"We've found exciting new way to convert exfoliated black phosphorus into phosphorene which can help produce more efficient and also potentially cheaper solar cells," says Dr Christopher Gibson, from the College of Science and Engineering at Flinders University.

"Our latest experiments have improved the potential of phosphene in solar cells, showing an extra efficiency of 2%-3% in electricity production."

Research into making high quality 2D phosphorene in large quantities- along with other future materials such as graphene - are paving the way to more efficient and sustainable production with the use of the SA-made VFD, near-infrared laser light pulses, and even an industrial-scale microwave oven.

"The work with phosphorene is exploring the addition of different atoms to the matrix which is showing very promising results in catalysis, particularly in the area of water splitting to produce hydrogen and oxygen," says Professor Shapter.

With the ability to artificially produce perovskite structures, commercial viability is at the threshold and not too far away once the cells can be successfully scaled up. Meanwhile research around the world continues to look for ways to improve and optimise perovskite cell performance.
-end-
This study was made available online in February 2019 ahead of final publication in print on May 10, 2019.

Professor of Clean Technology Colin Raston, Dr Kasturi Vimalanathan and Dr Gibson are among a team of Flinders Institute for Nanoscale Science and Technology researchers looking to improve solar cell efficiency with new and improved solar cell materials and processing systems.

Professor Shaper also is continuing the pioneering solar-cell research at the UQ with Dr Munkhbayar Batmunkh and Abdulaziz Bati, all co-authors of the new paper 'Efficient Production of Phosphorene Nanosheets via Shear Stress Mediated Exfoliation for Low-Temperature Perovskite Solar Cells.

The new paper by M Batmunkh, K Vimalanathan, C Wu, ASR Bati, L Yu, SA Tawfik, MJ Ford, TJ Macdonald, CL Raston, S Priya, CT Gibson and JG Shapter (University of Queensland, Pennsylvania State, Virginia Tech, UTS, RMIT, UCL and Flinders University) has been published in Small Methods (Wiley) DOI: 10.1002/smtd.201800521.

The latest study was supported by an Australian Research Council Discovery Program, Royal Society of Chemistry research grants, Microscopy Australia, Australian National Fabrication Facility and the new Flinders Microscopy and Microanalysis Centre.

Flinders University

Related Solar Cells Articles:

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
A good first step toward nontoxic solar cells
A team of engineers at Washington University in St. Louis has found what they believe is a more stable, less toxic semiconductor for solar applications, using a novel double mineral discovered through data analytics and quantum-mechanical calculations.
Organic solar cells will last 10 years in space
Scientists from the Skoltech Center for Energy Science and Technology, the Institute for Problems of Chemical Physics of RAS, and the Department of Chemistry of MSU presented solar cells based on conjugated polymers and fullerene derivatives, that demonstrated record-high radiation stability and withstand gamma radiation of >6,000 Gy raising hopes for their stable operation on the near-earth orbit during 10 years or even longer.
Next-gen solar cells spin in new direction
A nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
More Solar Cells News and Solar Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.