Nav: Home

Neural networks taught to recognize similar objects on videos without accuracy degradation

June 21, 2019

Andrey Savchenko, Professor at the Higher School of Economics (HSE University), has developed a method that can help to enhance image identification on videos. In his project, a network was taught by a new algorithm and can now make decisions on image recognition and classification at a rate 10 times faster than before. This research was presented in the paper 'Sequential three-way decisions in multi-category image recognition with deep features based on distance factor' published in Information Sciences.

The neural networks learned to identify humans and animals in videos a long time ago. Artificial neurons can learn by remembering what a certain object looks like in an image. Usually, researchers take an open database of photos (e.g., ImageNet, Places, etc.) and use it to teach a neural network. To speed up the decision-making process, our algorithm is set to pick only some of the sample images, or focus on a limited number of traits. Complications may arise when objects of different classes are in the same photo, and there are only small number of training examples for each category.

The new algorithm now can recognize images without significant accuracy degradation through the application of a sequential three-way decision-making method. By employing this approach, a neural network can analyze simple images in one way for clearly recognizable objects, while objects that are difficult to identify can be given a more detailed examination.

'Each photo can be described by literally thousands of features. So, it wouldn't make much sense to compare all of the features of a given input image with those of a basic training example, since most samples would not be similar to the analyzed image. So, we initially only compared just a few of the important features, and put aside the training instances, which obviously cannot be treated as final solutions. As a result, the training sample becomes smaller and only a few examples are left. At the next stage, we would increase the number of features for the remaining images, and then repeat this process until only one class is left,' Prof. Savchenko noted.

This approach reduced the time for recognition by 1.5 to 10 times, as compared to regular classifiers and known multi-category sequential three-way decisions. As a result, this technology could be used in future on mobile devices and other basic gadgets.
-end-
This study was made available online in March 2019 ahead of final publication in print in July 2019.

National Research University Higher School of Economics

Related Algorithm Articles:

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.
New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.
New algorithm to help process biological images
Skoltech researchers have presented a new biological image processing method that accurately picks out specific biological objects in complex images.
Skoltech scientists break Google's quantum algorithm
In the near term, Google has devised new quantum enhanced algorithms that operate in the presence of realistic noise.
The most human algorithm
A team from the research group SEES:lab of the Department of Chemical Engineering of the Universitat Rovira I Virgili and ICREA has made a breakthrough with the development of a new algorithm that makes more accurate predictions and generates mathematical models that also make it possible to understand these predictions.
Algorithm turns cancer gene discovery on its head
Prediction method could help personalize cancer treatments and reveal new drug targets.
New algorithm predicts gestational diabetes
Timely prediction may help prevent the condition using nutritional and lifestyle changes.
New algorithm could mean more efficient, accurate equipment for Army
Researchers working on an Army-funded project have developed an algorithm to simulate how electromagnetic waves interact with materials in devices to create equipment more efficiently and accurately.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
More Algorithm News and Algorithm Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.