Nav: Home

Your brain activity can be used to measure how well you understand a concept

June 21, 2019

As students learn a new concept, measuring how well they grasp it has often depended on traditional paper and pencil tests. Dartmouth researchers have developed a machine learning algorithm, which can be used to measure how well a student understands a concept based on his or her brain activity patterns. The findings are published in Nature Communications.

The study is one of the first to look at how knowledge learned in school is represented in the brain. To test knowledge of concepts in STEM, Dartmouth researchers examined how novices and intermediate learners' knowledge and brain activity compared when testing mechanical engineering and physics concepts, and then developed a new method to assess their conceptual understanding.

"Learning about STEM topics is exciting but it can also be quite challenging. Yet, through the course of learning, students develop a rich understanding of many complex concepts. Presumably, this acquired knowledge must be reflected in new patterns of brain activity. However, we currently don't have a detailed understanding of how the brain supports this kind of complex and abstract knowledge, so that's what we set out to study," said senior author David Kraemer, an assistant professor of education at Dartmouth College.

Twenty-eight Dartmouth students participated in the study, broken into two equal groups: engineering students and novices. Engineering students had taken at least one mechanical engineering course and an advanced physics course, whereas novices had not taken any college-level engineering or physics classes. The study was comprised of three tests, which focused on how structures are built and assessed participants' understanding of Newton's third law--for every action there is an equal and opposite reaction. Newton's third law is often used to describe the interactions of objects in motion, but it also applies to objects that are static, or nonmoving: all of the forces in a static structure need to be in equilibrium, a principle fundamental to understanding whether a structure will collapse under its own weight or whether it can support more weight.

At the start of the study, participants were provided with a brief overview of the different types of forces in mechanical engineering. In an fMRI scanner, they were presented with images of real-world structures (bridges, lampposts, buildings, and more) and were asked to think about how the forces in a given structure balanced out to keep the structure in equilibrium. Then, participants were prompted with a subsequent image of the same structure, where arrows representing forces were overlaid onto the structure. Participants were asked to identify if the Newtonian forces had been labeled correctly in this diagram. Engineering students (intermediate learners) answered 75 percent of the diagrams correctly and outperformed the novices, who answered 53.6 percent correctly.

Before the fMRI session, participants were also asked to complete two standardized, multiple-choice tests that measured other mechanical engineering and physics knowledge. For both tests, the engineering students had significantly higher scores than the novices with 50.2 percent versus 16.9 percent, and 79.3 percent versus 35.9 percent.

In cognitive neuroscience, studies on how information is stored in the brain often rely on averaging data across participants within a group, and then comparing their results to those from another group (such as experts versus novices). For this study, the Dartmouth researchers wanted to devise a data-driven method, which could generate an individual "neural score" based on the brain activity alone, without having to specify which group the participant was a part of. The team created a new method called an informational network analysis, a machine learning algorithm which "produced neural scores that significantly predicted individual differences in performance" testing knowledge of specific STEM concepts. To validate the neural score method, the researchers compared each student's neural score with his/her performance on the three tests. The results demonstrated that the higher the neural score, the higher the student scored on the concept knowledge tests.

"In the study, we found that when engineering students looked at images of real-world structures, the students would automatically apply their engineering knowledge, and would see the differences between structures such as whether it was a cantilever, truss or vertical load," explained Kraemer. "Based on the similarities in brain activity patterns, our machine learning algorithm method was able to distinguish the differences between these mechanical categories and generate a neural score that reflected this underlying knowledge. The idea here is that an engineer and novice will see something different when they look at a photograph of a structure, and we're picking up on that difference," he added.

The study found that while both engineering students and novices use the visual cortex similarly when applying concept knowledge about engineering, they use the rest of the brain very differently to process the same visual image. Consistent with prior research, the results demonstrated that the engineering students' conceptual knowledge was associated with patterns of activity in several brain regions, including the dorsal frontoparietal network that helps enable spatial cognition, and regions of ventral occipitotemporal cortex that are implicated in visual object recognition and category identification.

The informational network analysis could also have broader applications, as it could be used to evaluate the effectiveness of different teaching approaches. The research team is currently testing the comparison between hands-on labs versus virtual labs to determine if either approach leads to better learning and retention of knowledge over time.
-end-
Kraemer is available for comment at: david.j.m.kraemer@dartmouth.edu. The other co-authors from Dartmouth College include: Joshua S. Cetron, a former Dartmouth undergraduate student and currently a Harvard University graduate student; Andrew C. Connolly; Solomon G. Diamond and Vicki V. May of the Thayer School of Engineering; and James V. Haxby.

Dartmouth College

Related Brain Activity Articles:

Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.
Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.
Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.
Your brain activity can be used to measure how well you understand a concept
As students learn a new concept, measuring how well they grasp it has often depended on traditional paper and pencil tests.
Altered brain activity in antisocial teenagers
Teenage girls with problematic social behavior display reduced brain activity and weaker connectivity between the brain regions implicated in emotion regulation.
Gender impacts brain activity in alcoholics
Compared to alcoholic women, alcoholic men have more diminished brain activity in areas responsible for emotional processing (limbic regions including the amygdala and hippocampus), as well as memory and social processing (cortical regions including the superior frontal and supramarginal regions) among other functions.
Light, physical activity reduces brain aging
Incremental physical activity, even at light intensity, is associated with larger brain volume and healthy brain aging.
Measuring brain activity in milliseconds possible through new research
Researchers from King's College London, Harvard and INSERM-Paris have discovered a new way to measure brain function in milliseconds using magnetic resonance elastography (MRE).
Autism: Brain activity as a biomarker
Researchers from Jülich, Switzerland, France, the Netherlands, and the UK have discovered specific activity patterns in the brains of people with autism.
New MRI sensor can image activity deep within the brain
MIT researchers have developed an MRI-based calcium sensor that allows them to peer deep into the brain.
More Brain Activity News and Brain Activity Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.