Researchers induce temporary blindness to learn more about vision

June 22, 2004

Temporary rapidly induced blindness has provided evidence that an older, primitive part of the brain plays a role in processing visual information unconsciously.

This finding by researchers at Houston's Rice University was published in the Proceedings of the National Academy of Sciences online this week (www.pnas.org).

For the study, six volunteers with normal vision underwent more than 600 trials in which they had to look at a target placed at varying locations on a computer screen. For half of the trials, the participants were asked to move their eyes to the location of the target, and their eye movements were measured electronically.

For the other half, the participants were asked to press a button that corresponded with the location of the target on-screen. During the trials, the researchers sometimes tried to distract them with an item shown on the center of the screen. Response time was recorded for each trial.

Prior to the tests, the researchers mapped each participant's visual cortex - the area at the back of the brain that processes what the eye sees - with transcranial magnetic stimulation (TMS), a harmless noninvasive technique using brief magnetic pulses. When applied to the visual cortex, TMS induces temporary, reversible blindness lasting only a fraction of a second.

TMS was administered on 75 percent of the trials at optimal times to produce visual suppression. Participants were asked to report verbally after each trial whether they had perceived the distracting item. On most of the trials when TMS was administered, the participants reported not seeing the distractor when it was presented.

"We found that when we caused the person to go momentarily blind, they were still influenced by the distracting item they reported they had not seen, but only when they made eye movements, " said Tony Ro, associate professor of psychology, who directed the study.

Ro noted that in non-mammals, a portion of the midbrain known as the superior colliculus handles basic sensory information processing, including eye movements related to vision. As humans evolved, the visual cortex at the back of the brain took over the more complex processing of visual information.

The results of the eye-movement portion of Ro's study indicate that part of this older visual system still functions by encoding visual information.

"When we knocked out the conscious part of the brain with TMS, the brain still coded visual information unconsciously for eye movements, but not for more complex tasks, such as the button presses," Ro said.
-end-
A better understanding of how visual information is processed could help researchers find ways to treat vision problems experienced by patients with brain damage caused by stroke or injury.

Ro's co-authors were psychology graduate student Erik Chang and undergraduate students Dominique Shelton and Olivia Lee. Ro's lab is supported by the National Institutes of Health.

Rice University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.