Sequencing of the human body louse genome

June 22, 2010

The results of the sequencing and analysis of the human body louse genome, which were published on June 21 in the Proceedings of the National Academy of Sciences (PNAS), offer new insights into the intriguing biology of this disease-vector insect. The project involved more than 70 international scientists led by Professor Evgeny Zdobnov at the University of Geneva Medical School and the SIB Swiss Institute of Bioinformatics, with Professor Barry Pittendrigh at the University of Illinois and Professor Ewen Kirkness at the J. Craig Venter Institute.

The human body louse, Pediculus humanus humanus, is an obligate human parasite responsible for the transmission of bacteria that cause relapsing fever, trench fever, and epidemic typhus. The sequencing and comparative analysis of the body louse genome with other sequenced species revealed many features that will enhance our understanding of the relations between disease-vector insects, the pathogens they transmit, and the affected human hosts.

Zdobnov's team at the University of Geneva - Dr Daniel Gerlach, Dr Evgenia Kriventseva, and Dr Robert Waterhouse - focused on the identification of microRNA genes and the comparative analysis of the protein-coding gene repertoire using computational approaches. These studies revealed that despite having the smallest known insect genome (108Mb) and being an obligate parasite, the body louse has retained a remarkably complete "basal insect" repertoire of 10,773 protein-coding genes and 57 microRNAs. The compactness of the louse genome greatly helped to accurately predict the encoded gene repertoire, which includes relatively few genes associated with sensing or responding to the environment - consistent with the body louse's relatively stable habitat offered by the human host. According to Zdobnov, "The key phylogenetic position of the body louse, together with the completeness and accuracy of its gene repertoire, mean that this genome will provide an invaluable evolutionary reference point for future studies of all other sequenced insect species, especially for the characterisation of key requirements for insect growth and development".

The human body louse usually lives in clothing and therefore infestations are associated with wearing unwashed clothes for prolonged periods such as during wartime, natural disasters or the often poor personal hygiene of homeless people or refugees. As well as irritations from infestations with body lice or the closely-related human head lice, the body louse may carry harmful bacteria such as Rickettsia prowazekii that cause epidemic typhus and are classified as a category B bioterrorism agent. As body and head lice are becoming increasingly resistant to traditional pesticides, the sequencing of the body louse genome will greatly help in the important search for new control methods facilitated by detailed molecular studies. With this in mind, the genome of the obligatory louse endosymbiont, Candidatus Riesia pediculicola, was also sequenced. Targeting the Reisia bacteria could offer novel louse control methods as Riesia are essential to the body louse because they encode the genes required for the production of vitamin B5, which is deficient in the louse diet of human blood.

"As the first sequenced genome of a permanent vertebrate ectoparasite", says Zdobnov, "these studies will help to understand the molecular mechanisms underlying the evolution of extreme specialization for life on a single host species". The compact yet complete body louse genome provides a robust outgroup for comparative studies with other insects, and the three-way interactions between the human host, the body louse parasite, and the Riesia endosymbiont offer numerous opportunities to gain greater insights into host-parasite-symbiont tripartite coevolution and speciation.
About SIB

The SIB Swiss Institute of Bioinformatics is an academic not-for-profit foundation federating bioinformatics activities throughout Switzerland. Its two-fold mission is to provide world-class core bioinformatics resources to the national and international life science research community in key fields such as genomics, proteomics and systems biology; as well as to lead and coordinate the field of bioinformatics in Switzerland. It has a long-standing tradition of producing state-of-the-art software for the life science research community, as well as carefully annotated databases. The SIB includes 29 world-class research and service groups, which gather close to 400 researchers, in the fields of proteomics, transcriptomics, genomics, systems biology, structural bioinformatics, evolutionary bioinformatics, modelling, imaging, biophysics, and population genetics in Geneva, Lausanne, Berne, Basel and Zurich. SIB expertise is widely appreciated and its services are used by life science researchers worldwide.


Professeur Evgeny Zdobnov,
Computational Evolutionary Genomics Group
Université de Genève
Dp Med. Génétique et Développement
CMU - 1, rue Michel Servet
1211 Geneva 4
Telephone +41 (0)22 379 59 73

Irène Perovsek, Head of Communications
SIB Swiss Institute of Bioinformatics
Quartier Sorge, Bâtiment Génopode / CH-1015 Lausanne / Switzerland
Telephone +41 21 692 40 54

Swiss Institute of Bioinformatics

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to