Nav: Home

Neutralizing acidic forest soils boosts tree growth, causes spike in nitrogen export

June 22, 2016

(Millbrook, NY) A legacy of acid rain has acidified forest soils throughout the northeastern US, lowering the growth rate of trees. In an attempt to mitigate this trend, in 1999 scientists added calcium to an experimental forest in New Hampshire. Tree growth recovered, but a decade later there was a major increase in the nitrogen content of stream water draining the site. So reports a new paper in the Proceedings of the National Academy of Sciences by a team of scientists from the Cary Institute of Ecosystem Studies, Duke University, and Syracuse University.

Gene Likens, President Emeritus of the Cary Institute and co-author on the paper, participated in the calcium addition in 1999. It took place at Hubbard Brook Experimental Forest, a 7,800-acre living laboratory in New Hampshire's White Mountains. Calcium concentrations in forest soils at the site had been depleted due to prolonged exposure to acid rain. The goal of the large-scale experiment was to test if restoring calcium to these soils would result in improved forest growth.

Likens and colleagues added 2,600 pounds of Wollastonite pellets, a calcium silicate source, to a 30-acre forested watershed. And they waited. The soil pH and acid-neutralizing capacity of soils and stream water increased significantly, and forest growth rebounded. Sugar maples, a dominant canopy species with a high calcium requirement, began to recover.

"For nearly ten years, it looked like our predictions were correct," Likens explains. "The calcium was largely retained and the forest was growing. Then, in 2010, we noticed streams draining the treated site had elevated nitrogen levels. By 2013, yearly inorganic nitrogen losses were thirty times what we expected, an increase we had only seen after forest clear-cutting experiments."

Growing forests typically act as nitrogen 'sinks,' with trees retaining nitrogen in their biomass. Yet a decade after the calcium addition, the treated site did the opposite, acting as a nitrogen 'source' and leaking high levels of inorganic nitrogen into nearby streams. This occurred at a time when atmospheric nitrogen pollution was declining and trees were not being cut down.

Emma Rosi-Marshall, an aquatic ecologist at the Cary Institute and a co-author on the paper, explains, "Long term monitoring has shown that streams throughout the Hubbard Brook Valley have declining levels of inorganic nitrogen. The rules of conventional ecology suggested that after the calcium addition, forest growth would lead to even more nitrogen retention. Yet the treated watershed is shedding nitrogen."

The study's authors suspect that when the calcium addition lowered the acidity of forest soils, it enhanced microbial processing of soil organic matter - releasing nitrogen stored in the forest floor. Other researchers at Hubbard Brook have been studying the forest floor and have found that soils in the treated watershed have decreased amounts of organic matter. The exact mechanism leading to nitrate losses remains under investigation.

Co-author Emily Bernhardt, a biogeochemist at Duke University notes, "Results pose interesting questions about whether acid deposition has enhanced the way that the forest floor component of soils store carbon and sequester nutrients, and, if so, how this will change in response to the recovery of historic acidic conditions throughout the northeastern US."

Findings illustrate the importance of sustained research and the complexity of mitigating acid rain. Likens concludes, "Long-term, comprehensive research is essential to advancing scientific understanding. Major, unanticipated impacts of an acid rain mitigation experiment took a decade to emerge. Our ability to track this study over time has shed new insight into watershed dynamics. In the end, preventing environmental degradation is easier than fixing the damages done."
-end-
The Cary Institute of Ecosystem Studies is an independent, nonprofit environmental research organization located on 2,000 acres in New York's Hudson Valley. A world-premier center for ecosystem science, areas of expertise include disease ecology, forest and freshwater health, climate change, urban ecology, and invasive species. Since 1983, our scientists have produced the unbiased research needed to inform effective management and policy decisions.

Cary Institute of Ecosystem Studies

Related Nitrogen Articles:

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
Researchers discover new nitrogen source in Arctic
Scientists have revealed that the partnership between an alga and bacteria is making the essential element nitrogen newly available in the Arctic Ocean.
Scientists reveal impacts of anthropogenic nitrogen discharge on nitrogen transport in global rivers
Scientists found that riverine dissolved inorganic nitrogen in the USA has increased primarily due to the use of nitrogen fertilizers.
Nitrogen gets in the fast lane for chemical synthesis
A new one-step method discovered by synthetic organic chemists at Rice University allows nitrogen atoms to be added to precursor compounds used in the design and manufacture of drugs, pesticides, fertilizers and other products.
Nitrogen fixation in ambient conditions
EPFL scientists have developed a uranium-based complex that allows nitrogen fixation reactions to take place in ambient conditions.
New regulators of nitrogen use in plants identified
Researchers have identified a set of gene regulators in plants that could help plants utilize nitrogen better, which would prevent ecological damage from excess nitrogen in the soil.
More Nitrogen News and Nitrogen Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.