Nav: Home

How a woman with amnesia defies conventional wisdom about memory

June 22, 2016

She no longer recognizes a Van Gogh, but can tell you how to prepare a watercolor palette.

She can't recall a single famous composer, but knows the purpose of a viola's bridge.

She hasn't flown a plane since 2007, when viral encephalitis destroyed her hippocampus, the part of the brain used to form new memories and retrieve old ones. And she couldn't describe a single trip she's ever taken. But in detail, she'll list the steps needed to keep a plane from stalling and where to find the rudder controls.

Johns Hopkins University cognitive scientists say the sharp contrasts in this patient's memory profile -- her inability to remember facts about pursuits once vital to her life as an artist, musician and amateur aviator, while clearly remembering facts relevant to performing in these domains -- suggest conventional wisdom about how the brain stores knowledge is incorrect.

Conventional wisdom about memory firmly separates declarative knowledge, or memories about facts, from memories for skills, or "muscle memory." For instance, a severe amnesiac with muscle memory might never forget how to ride a bike, but probably couldn't recall anything about the Tour de France. But because skilled performance, like playing music or flying airplanes, requires much more than mere muscle memory, and because this patient retained it despite losing most other aspects of her declarative memory, researchers conclude this type of skill-related declarative knowledge is different.

"There is such a contrast between her not being able to tell us anything about her former life and not being able to tell us anything about many aspects of art and music that she once knew well, but when we ask her to tell us how to do a watercolor, she is articulate and full of detail," said Barbara Landau, the Dick and Lydia Todd Professor of Cognitive Science at Johns Hopkins. "How can you talk about this knowledge of "how to" as distinct from declarative knowledge? It is declarative knowledge."

The findings, now online, are due to appear in an upcoming issue of the journal Cognitive Neuropsychology.

Before her illness, Lonni Sue Johnson, 64, was an accomplished artist whose portfolio included six New Yorker magazine covers. She was also an amateur violist who played in orchestras and chamber groups and a licensed single-engine airplane pilot who flew more than 400 flights and owned two planes. Her illness left her with severe brain damage and catastrophic memory impairment, including severe losses of memory about her previous life and severely restricted ability to learn new facts.

She has very little memory of her past -- not even of her wedding day. She forgets having done something immediately after doing it. She also has very little memory for general world knowledge, including facts about the fields in which she once excelled.

To determine whether Johnson's "skill-related" memory was preserved despite extensive losses in memory for general world knowledge, the team tested her on her memory for facts related to performing four of her former top skills -- art, music, flying and driving. They gave the same tests to people of similar age and experience in those areas, as well as to people with no experience in them.

The oral tests, of about 80 questions each, covered information about the techniques, equipment and terminology involved in performing the various skills. They included queries such as "How might one remove excess paint when painting with watercolor?" and "How should one touch the strings of an instrument to produce a harmonic?"

In art and driving, Johnson scored nearly as high as experts taking the test. In music and aviation, she did not perform as well, but knew considerably more than the novices.

"Although Johnson had not created watercolors, had not flown a plane, and had not driven since her illness, she could still describe how one would go about carrying out these activities," said Johns Hopkins cognitive scientist Michael McCloskey. "These findings suggest that skill-related knowledge can be spared even with dramatic losses in other kinds of knowledge."
-end-
The team also included first author Emma Gregory, a former Johns Hopkins post-doctoral fellow, and research assistant Zoe Ovans, also of Johns Hopkins.

This research was supported by the Brain Science Institute at Johns Hopkins.

Related video here; raw video for media use here

Johns Hopkins University

Related Memory Articles:

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.