Nav: Home

Smooth propagation of spin waves using gold

June 22, 2017

Assistant Professor Taichi Goto at Toyohashi University of Technology elucidated the noise generation mechanism of the spin wave (SW), the wave of a magnetic moment transmitted through magnetic oxide, and established a way to suppress it. The large noise generated by SWs traveling through magnetic oxides has presented a significant obstacle to its applications. However, it became clear that noise can be suppressed by installing a thin gold film in the appropriate places. This method is expected to be applied to SW devices such as multi-input and multi-output phase interference devices for SWs. The research results were reported in Journal of Physics D: Applied Physics on June 15, 2017.

Recent electronic devices using semiconductor materials are having difficulty meeting the demand of a rapidly growing information society due to issues such as a high chip temperature due to high integration. Development of an SW logic circuit that can process information, and significantly suppress heat generation through transmitting only SWs without transferring electrons themselves, has been attracting attention. SWs that propagate through magnetic oxides have the advantage of low energy loss and a long transmission distance. On the other hand, as the loss is so small, SW reflected at the end of the material or interface with the electrode disturb the target spin wave. This phenomenon is called SW noise, which has made SW unsuitable for application in the past.

The Spin Electronics Group of Toyohashi University of Technology discovered that forming a gold film with sufficient length at the end of an yttrium iron garnet (YIG), which is a well-known magnetic oxide material, suppresses the generation of unnecessary SWs. In addition, the group found for the first time that SW noise is also sensitive to the position of the gold film.

"There are series of new devices using SWs and findings of new phenomena, yet there hasn't been much research on finding out how to transmit SWs through magnetic oxide or elucidating the cause of the generation of disturbing SWs.", said Assistant Professor Goto.

The first author master course student Shimada who ran the simulation said, "We analyzed the fundamental propagation characteristics of the structure using gold film. Since this method can significantly suppress the noise, it will contribute to the development of SW devices that use magnetic oxide. Furthermore, SW logic circuits that use phase information can be realized as the phases of waves are stabilized." SW propagation characteristics were calculated and analyzed based on the finite element analysis method, by computer generating a three-dimensional model that has the same size as the sample used in the actual experiment. A model with a pair of electrodes for exciting SWs and a gold film for removing noise placed on the magnetic oxide was used to find out how gold film affects SW propagation by comprehensively changing the length of magnetic oxide materials, the position of the gold film, and the distance from the electrode. The result showed that when the distance between the gold film and the electrodes is long, a standing wave of SWs is generated, causing strong noise. The group learned that the noise can be suppressed by positioning the gold film close enough to the electrodes. This helps smoothen the propagation characteristics, and realizes a stable element design that can keep the influence of some frequency variations and disturbances to the entire device, to the propagation characteristics, small.

This simulation is a known method with high reproducibility. Therefore, the method is expected to be applied to SW devices such as multi-input/multi-output phase interference devices for SW in the future.
-end-
Funding agency:

This work supported by Grants-in-Aid for PRESTO Program (JPMJPR1524) from JST, KAKENHI (Nos. 26706009?26220902?25820124) from JSPS, and Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2802) from JSPS.

Reference:

Kei Shimada, Taichi Goto, Naoki Kanazawa, Hiroyuki Takagi, Yuichi Nakamura, Hironaga Uchida and Mitsuteru Inoue, "Extremely flat transmission band of forward volume spin wave using gold and yttrium iron garnet", 2017 J. Phys. D: Appl. Phys. 50 275001. https://doi.org/10.1088/1361-6463/aa7505

Toyohashi University of Technology

Related Electrodes Articles:

Brain-computer interfaces without the mess
It sounds like science fiction: controlling electronic devices with brain waves.
Nanoparticles in lithium-sulphur batteries detected with neutron experiment
An HZB team has for the first time precisely analysed how nanoparticles of lithium sulphide and sulphur precipitate onto battery electrodes during the course of the charging cycle.
Leap toward robust binder-less metal phosphide electrodes for Li-ion batteries
Researchers at the Toyohashi University of Technology have successfully fabricated a binder-less tin phosphide (Sn4P3)/carbon (C) composite film electrode for lithium-ion batteries via aerosol deposition.
Review on the synthesis and anti-oxidation of copper nanowires for transparent conductive electrodes
In a paper to be published in the forthcoming issue in NANO, a team of researchers have reviewed the methods of synthesizing copper nanowires (Cu NWs) and techniques to improve its oxidation resistance.
Through thick and thin: Neutrons track lithium ions in battery electrodes
Lithium-ion batteries are expected to have a global market value of $47 billion by 2023, but their use in heavy-duty applications such as electric vehicles is limited due to factors such as lengthy charge and discharge cycles.
Expanding the use of silicon in batteries, by preventing electrodes from expanding
Silicon anodes are generally viewed as the next development in lithium-ion battery technology.
Large-scale window material developed for PM2.5 capture and light tuning
A research team from University of Science and Technology of China develops a simple and economical process to fabricate large-scale flexible smart windows.
Application of nanosized LiFePO4 modified electrode to electrochemical sensor & biosensor
The aim of this paper was to construct nanosized LFP modified electrodes, which could be applied as working electrode for rutin analysis and as an electrochemical biosensor for direct electrochemistry of Hemoglobin (Hb).
Research could lead to more durable cell phones and power lines
Researchers from Binghamton University, State University of New York have developed a way to make cell phones and power lines more durable. 
A starch and graphene hydrogel geared towards electrodes for brain implants is developed
The Materials + Technology research group at the UPV/EHU's Faculty of Engineering -- Gipuzkoa has, in collaboration with the University of Strasbourg, developed some hydrogels with potential biomedical applications.
More Electrodes News and Electrodes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.