Nav: Home

How pheromones trigger female sexual behavior

June 22, 2017

A study by a group of Japanese scientists showed how a male pheromone in mice enhances sexual behaviors in females--and how it may enhance a different behavior, aggression, in males -- by identifying distinct neural circuits and neurons that generate a particular behavioral response to specific chemical signals. The findings point to a model for further investigating how sex-specific innate behaviors in living things are controlled.

In most animals, the sense of smell and other sensory perception of chemical stimulus play a critical role in controlling instinctive behaviors. For instance, chemical signals from a partner, competitor or predator elicit specific behavior in mice, namely mating, aggression and defensive behaviors, respectively.

Ever since a pheromone secreted by a female moth that attracts the opposite sex was identified in 1959, scientists have pinned down numerous chemicals that affect behavior in a wide variety of animal species, from insects to mammals to humans. Despite their growing database of known pheromones, scientists knew little about how the brain actually converts certain sensory input into appropriate behavioral output, especially in mammals.

"It is widely known that some chemicals, especially odors, can impact an animal's instinctive behaviors even on first contact," says Kazushige Touhara, a professor at the University of Tokyo's Graduate School of Agricultural and Life Sciences, who supervised the study. "We assumed there was a neural mechanism in the brain that correctly connects important sensory information to appropriate behavioral centers in the brain," he adds.

In its study, the research group used a male pheromone, secreted from the tear gland, called ESP1 that has been shown to enhance sexual behaviors in female mice, while promoting aggression in males exposed to ESP1 in conjunction with unfamiliar male urine. Unlike other pheromones, which tend to be composed of a complex web of substances, ESP1 is a single purified chemical that is detected by a sole corresponding receptor, making it comparatively easy to track.

The group employed various viral tracing methods--infecting receptor-expressing neurons with a virus strain and watching them spread as they label infected cells with a fluorescent protein--to visualize the neural circuit downstream of the ESP1 receptor, as well as providing an image of nerve fibers belonging to specific neurons in the brain and synapses relaying impulses from neuron to neuron, to map the anatomical foundation that conveys ESP1 signals in the brain. Using this method, researchers found that the information of ESP1 was routed differently in males and females by neurons in a region of the brain called the amygdala.

The researchers also found that activation of ESP1-responding neurons in the region of the brain called the hypothalamus enhanced sexual behavior in female mice, even in the absence of actual ESP1, by using various tools to chemically or optically control neural activities, combined with a process called the TRAP method, which allows them to selectively manipulate neurons responding to a particular stimulus. In contrast, activation of neurons that responded to snake skin, a predator cue that elicits defensive behaviors, in the same brain area showed no change in sexual behaviors.

"This finding suggests that there are two different types of neurons, ESP1 and predator neurons, and only the former controls sexual behaviors in female mice," explains Touhara.

A similar discovery in fruit flies, reported in an earlier independent study, which shows that a particular sex pheromone enhances female sexual behaviors and male aggression via separate neural circuits between the sexes, suggests that a sexually distinct circuit may be a universal strategy for converting male pheromone information into appropriate behavioral output. Further understanding the neural basis underlying the control of female sexual behaviors could also provide insights into the origin of sexual dysfunctions.
-end-
Journal article:

Kentaro K Ishii, Takuya Osakada, Hiromi Mori, Nobuhiko Miyasaka, Yoshihiro Yoshihara, Kazunari Miyamichi and Kazushige Touhara
A Labeled-Line Neural Circuit for Pheromone-Mediated Sexual Behaviors in Mice
Neuron

URL: http://dx.doi.org/10.1016/j.neuron.2017.05.038

DOI: 10.1016/j.neuron.2017.05.038

Collaborating institution:

RIKEN Brain Science Institute

Links:

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo

ERATO Touhara Chemosensory Signal Project

Research contact:

Kazushige Touhara
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Tel: +81-3-5841-5109
Fax: +81-3-5841-8024
Email: ktouhara@mail.ecc.u-tokyo.ac.jp

Funding:

This work was supported by ERATO Touhara Chemosensory Signal Project (JPMJER1202) and JSPS Kakenhi grant (16K20963).

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab