Nav: Home

Rare cells are 'window into the gut' for the nervous system

June 22, 2017

Specialized cells in the gut sense potentially noxious chemicals and trigger electrical impulses in nearby nerve fibers, according to a new study led by UC San Francisco scientists. "These cells are sensors, like a window looking into the contents of the gut," said James Bayrer, MD, PhD, an assistant professor of pediatrics at UCSF and one of the lead authors of the paper.

Using gut-mimicking "organoids" grown from mouse stem cells, the researchers showed how cells in the intestinal lining called enterochromaffin (EC) cells alert the nervous system to signs of trouble in the gut, from bacterial products to inflammatory food molecules.

The authors of the new study--published online in Cell on June 22, 2017--said that understanding the role of EC cells in how the gut reacts, and overreacts, to chemical irritants could provide new approaches for treating gastrointestinal disorders such as irritable bowel syndrome (IBS).

With over 100 times the surface area of our skin, the gut is the body's largest surface exposed to external substances. Though EC cells make up only one percent of the gut's lining, they produce 90 percent of the body's serotonin, a key signaling molecule, so scientists have long been curious about their functions. Serotonin is best known for mediating mood through its actions in the brain, but it has a very different role in the gut, where it is involved in gut contractions and gastric discomfort.

"There are so few of these cells, but they seem so powerful," said Holly Ingraham, PhD, a UCSF professor of cellular and molecular pharmacology and co-senior author of the new paper. "People are very interested in understanding what these cells do with all that serotonin."

EC cells are interspersed among other cells that make up the lining of the intestinal tract, on the surface of tiny, fingerlike structures called villi that project into the gut's inside space. Within the villi, underneath the EC cells and other cells, are nerve fibers which sense the movement and contents of the gut and contribute to intestinal pain and discomfort. But precisely how these nerve fibers communicate with EC cells has been unclear.

In their new study, the researchers showed that EC cells integrate information about chemical irritants, bacterial compounds, and stress hormones in the gut, then use serotonin to pass that information on to the neighboring nerve cells, from which electrical impulses may travel throughout the gut's nervous system and ultimately to the brain.

"People had suspected such a role for EC cells before, but this study is exciting because for the first time it gives us a rigorous handle on exactly how the gut talks to the nervous system," said David Julius, PhD, a professor and chair of UCSF's Department of Physiology and the study's other senior author.

Cells Are Electrically Excited by Irritants

The collaboration at the heart of the new study was an unusual one for Ingraham and Julius, who are married but usually take different paths in their research.

Julius's lab, which is focused on learning how the body's pain sensors work using natural products like chili peppers, horseradish and snake venom, became interested in this new research direction after discovering that cells sensitive to a painful spider toxin were highly prevalent in the gut. Nicholas Bellono, PhD, a postdoctoral researcher in the lab and the other lead author on the paper, became fascinated by the way the gut's lining, called the epithelium, appears to sense and react to what's inside it.

"The nervous system, the immune system, the vasculature, everything converges in the epithelium," said Bellono. He took particular interest in EC cells, wondering if the serotonin they release activated adjacent nerve fibers.

When Julius mentioned Bellono's new interest to Ingraham, she suggested that Bellono work with Bayrer, a gastroenterologist who was leading efforts in her lab to study gut disorders using intestinal organoids, small clumps of cells grown from stem cells that can serve as models of the gut. For Bellono and Bayrer, organoids made the EC cells much easier to work with. "You can look in the dish and there's a little intestine in there - it's totally wild," said Bellono.

The team tested the cells' reactions to dozens of different molecules and found that three classes of molecules caused a change in voltage across the cell's membranes. Intriguingly, the three types of molecules that triggered EC cells - bacterial byproducts called volatile fatty acids; a class of hormones called catecholamines (including dopamine, epinephrine and norepinephrine) that can signal stress in the gut; and a dietary irritant called AITC, which is responsible for garlic's pungent flavor - have all previously been linked to IBS.

When the EC cells are excited by any of these molecules, they release serotonin into synapses with the nearby nerve fibers, acting much like other sensory organs, from taste buds to odor receptors. In tissue samples taken from mice, the team showed that this serotonin release triggered electrical impulses in nerve fibers, indicating the signal could move quickly throughout the gut.

"They're actually electrically excitable," said Julius, who also holds the Morris Herzstein Chair in Molecular Biology and Medicine at UCSF. "They kind of behave like neurons."

Signals Could Cause Both Pain and Pooping

The intestines are unique among our organs in that many of the nerve signals that control them come not from the brain but from a network of nerves within the gut sometimes called "the second brain," which helps carry out much of the organ's routine contractions and digestive activities without the intervention of the brain itself.

The team thinks the nerve signals that originate with the EC cells can affect both networks, causing involuntary gut contractions or, if the signals reach the brain, what Ingraham described as a "gut ache."

"Just like when we taste something foul and we try to get rid of it" through gagging, the gut may react to the foul "taste" of bacterial or irritating molecules by trying to push them out the other end, said Bayrer. "This could be a way of the gut sensing which populations of bacteria are around."

The next step, said the researchers, is to study EC cells in organoids grown from human cells. Because mice and humans have different diets, our EC cells could be sensitive to entirely different molecules.

Targeting Cells Could Help Treat Irritable Bowel Syndrome

Though triggering the gut to push out unwanted chemicals and microbes is normally healthy, overreactions by EC cells and the nerve networks they trigger may cause problems like IBS. The team hopes that understanding what leads these cells to react to food and bacteria will aid the search for drugs that will prevent them from overreacting, perhaps by blocking the proteins that sense these molecules in the first place.

Intriguingly, clinicians already use SSRI's (Selective Serotonin Reuptake Inhibitors), which affect serotonin levels, to treat IBS, suggesting there may be a link between the disease and the serotonin system. Bayrer, a pediatric gastroenterologist who works with children with IBS, hopes understanding EC cells and other gut sensors will help researchers understand and improve such treatments.
-end-
Additional authors on the paper were Duncan B. Leitch, PhD, and Chuchu Zhang, PhD, of UCSF; and Joel Castro, PhD, Tracey A. O'Donnell, PhD, and Stuart M. Brierley, PhD, of Flinders University and the University of Adelaide, both in Australia.

The research was supported by the US National Institutes of Health (T32HL007731, R01 NS081115, R01 NS055299, R01 DK099722, K12 HD072222, K08 DK106577), the Howard Hughes Medical Institute, the Simons Foundation, the American Diabetes Association (714MI08), and the National Health and Medical Research Council of Australia (APP1083480).

About UCSF: UC San Francisco (UCSF) is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy; a graduate division with nationally renowned programs in basic, biomedical, translational and population sciences; and a preeminent biomedical research enterprise. It also includes UCSF Health, which comprises three top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospitals in San Francisco and Oakland, and other partner and affiliated hospitals and healthcare providers throughout the Bay Area. Please visit http://www.ucsf.edu/news.

Follow UCSF
ucsf.edu | Facebook.com/ucsf | Twitter.com/ucsf | YouTube.com/ucsf

University of California - San Francisco

Related Stem Cells Articles:

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.