Nav: Home

Simulated honeybees can use simple brain circuits for complex learning

June 22, 2017

Honeybees may not need key brain structures known as mushroom bodies in order to learn complex associations between odors and rewards, according to new research published in PLOS Computational Biology.

The new findings surprised the research team because mushroom bodies are thought to be essential for intelligent control over instinctive behaviors -- similar to the mammalian cerebral cortex.

In the study, HaDi MaBouDi of Queen Mary University of London and colleagues built a realistic computational model of the brain circuits used by bees to process olfactory information. Then, they investigated what would happen if they removed the mushroom body circuits from the simulated bees.

The researchers tested how well the simulated bees would perform on tasks commonly used to explore learning in real bees. These included tasks in which bees learn to associate different odors with different rewards.

Unexpectedly, the "mutant bees" performed just as well on many (but not all) of the odor learning tasks as do real bees with intact mushroom bodies. They could even learn to associate a mixture of two odors with reward when each individual odor was not linked to reward. To do so, the simulated bees relied on a simple neural circuit that had previously been associated only with instinctive behaviors.

"This perhaps explains why the tiny brain of bees is so good at multi-tasking and juggling so many learning behaviors and instinctual routines," says study co-author Lars Chittka. "It shows that remarkable forms of plasticity can be pervasive anywhere, even in the simplest nervous systems."

The findings also raise the question of why bees need two possibly redundant neural pathways. "In a complex odor environment where social bees must respond appropriately to dozens of pheromones in the hive but also to learned olfactory signals from rewarding flowers," Chittka says, "two parallel but intertwined pathways with overlapping functions but different priorities in the gradient from innate to learnt odor responses of various complexities might provide the required flexibility."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005551

Citation: MaBouDi H, Shimazaki H, Giurfa M, Chittka L (2017) Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities. PLoS Comput Biol 13(6): e1005551. https://doi.org/10.1371/journal.pcbi.1005551

Funding: This research was funded by the Human Frontiers Science Programme (http://www.hfsp.org/) Grant number RGP0022/2014 to LC, MG, and HM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Bees Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
Where are the bees? Tracking down which flowers they pollinate
Earlham Institute (EI), with the University of East Anglia (UEA), have developed a new method to rapidly identify the sources of bee pollen to understand which flowers are important for bees.
Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.
Trees for bees
Planting more hedgerows and trees could hold the key to helping UK bees thrive once again, a new study argues.
More Bees News and Bees Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...