Nav: Home

Researchers show first evidence of using cortical targets to improve motor function

June 22, 2017

Monica A. Perez, P.T., Ph.D., Associate Professor, Department of Neurological Surgery and The Miami Project, and colleagues, recently published A novel cortical target to enhance hand motor output in humans with spinal cord injury in the June issue of Brain that provides the first evidence that cortical targets could represent a novel therapeutic site for improving motor function in humans paralyzed by spinal cord injury (SCI).

A main goal of rehabilitation strategies in humans with SCI is to strengthen transmission in spared neural networks. Although neuromodulatory strategies have targeted different sites within the central nervous system to restore motor function following SCI, the role of cortical targets remains poorly understood.

"I am excited to see that electrophysiology can be successfully used to guide interventions for recovery of function after spinal cord injury," says Dr. Perez.

In this study, Drs. Perez, Jinyi Long, Ph.D., and Paolo Federico, Ph.D. used 180 pairs of noninvasive transcranial magnetic stimulation for 30 minutes over the hand representation of the primary motor cortex at an interstimulus interval mimicking the rhythmicity of descending late indirect (I) waves in corticospinal neurons (4.3 ms; late I-wave protocol) or at an interstimulus interval in-between I-waves (3.5 ms; control protocol) on separate days in a randomized order.

Late I-waves are thought to arise from trans-synaptic cortical inputs and have a crucial role in the recruitment of spinal motor neurons following SCI. The researchers found that the excitability of corticospinal projections to intrinsic finger muscles increased in SCI and uninjured participants after the late I-wave but not the control protocol for 30 to 60 minutes after the stimulation. Importantly, individuals with SCI were able to exert more force and electromyographic activity with finger muscles after the stimulation showing an enhanced ability to grasp small objects with their hands.

"This study is a major contribution to the realization of a powerful new class of rehabilitation therapies that can target beneficial plasticity to crucial sites in the nervous system. By taking advantage of recent scientific and technical advances, Dr. Perez's group produced beneficial change in the cortical circuitry and spinal connections underlying voluntary movement," says Dr. Jonathan R. Wolpaw, M.D. Director of the National Center for Adaptive Neurotechnologies Albany, New York.

"This carefully conducted study provides several pieces of important information in developing strategies to improve function following spinal cord injury. They provide further evidence demonstrating rather clearly, contrary to years of dogma, that positive functional plasticity potential persists within the sensorimotor system for years after a spinal injury," says Dr. Reggie Edgerton, Ph.D. UCLA Brain Research Institute.

These results emphasize the need to develop new rehabilitation therapies based on mechanistic approaches to improve motor function in humans with paralysis due to spinal cord injury. Currently, Dr. Perez' group is testing the effect of this intervention when given on consecutive days and in individuals with more severe muscle paralysis.

"What I find appealing about the work is that they exploit a basic characteristic of the human corticospinal neural circuit and designed a way to strengthen connections that does not depend on the person performing a motor task," said John H. Martin, Ph.D., The City College of New York.
-end-


University of Miami Miller School of Medicine

Related Spinal Cord Injury Articles:

Spinal cord injury increases risk for mental health disorders
A new study finds adults with traumatic spinal cord injury are at an increased risk of developing mental health disorders and secondary chronic diseases compared to adults without the condition.
Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.
IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.
UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.
Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.
Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.
Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.
From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.
Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.
Timing could mean everything after spinal cord injury
Moderate damage to the thoracic spinal cord causes widespread disruption to the timing of the body's daily activities, according to a study of male and female rats published in eNeuro.
More Spinal Cord Injury News and Spinal Cord Injury Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.