Nav: Home

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018

Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

This is the implication of a study led by researchers at NYU School of Medicine and published online June 22 in Nature Communications.

Specifically, the research team found that mice genetically engineered to lack the gene for the gamma-CaMKII shuttle protein took twice as long as normal mice to form a memory needed to complete a simple task.

"Our study shows for the first time that gamma-CaMKII plays a critical role in learning and memory in live animals," says Richard Tsien, PhD, chair of the Department of Neuroscience and Physiology and director of the Neuroscience Institute at NYU Langone Health.

"Adding more weight to our results, we showed that making the same change in the shuttle's structure seen in a human child with severe intellectual disability also took away the ability of mice to learn," says Dr. Tsien, also the Druckenmiller Professor of Neuroscience. He says this result suggests that the shuttle works similarly in the two species.

The research team then restored the learning ability by re-inserting the human version of the shuttle protein into mice.

The current study revolves around the nerve cells that coordinate thought and memory. Each cell in a nerve pathway sends an electric pulse down its branches until it reaches a synapse, a gap between itself and the next cell in line. Signals that form memories start at synapses where sights and sounds trigger responses, and end when genes are turned on in the nuclei of nerve cells to make permanent, physical changes in their connections.

When sensory information triggers known mechanisms near synapses, calcium is released into nerve cells, building up until it triggers chain reactions fine-tuned by partnering proteins like calmodulin or CaM, say the study authors. When calcium and CaM link up and arrive in a nerve cell's nucleus, the compartment where genes operate, they set off reactions known to activate the protein CREB, which dials up the action of genes previously linked to memory formation.

Missing Link

Going into the study, a "missing link" in the field was an understanding of how synapses "talk to" nerve cell nuclei as memories form. In the current study, researchers determined for the first time that this communication occurs when gamma-CaMKII shuttles the calcium/calmodulin complexes that form just inside of nerve cells to their nuclei.

Comparing spatial memory in mice without gamma-CaMKII to normal mice, the study authors found that gamma-CaMKII "knockout" mice were much less able to locate a platform hidden beneath the surface of murky water in a maze. During this exercise, normal mice quickly identify the platform's location.

The team also found that, an hour after maze training, normal mice displayed a significant increase in expression of three genes--BDNF, c-Fos, and Arc--known from past studies to help form long-term, spatial memories based on experiences. In contrast, training-induced increases in the expression of these genes did not occur in mice engineered to lack gamma-CaMKII.

Along with removing the entire gene encoding gamma-CaMKII protein from some mice, a separate group of mice were engineered to have a version of the protein with a small change found by a 2012 study in a boy with severe intellectual disability. In the nerve cells of the boy, the protein building block at position 292 in the amino acid backbone of gamma-CaMKII, typically arginine, was occupied instead by a proline residue (R292P). The change rendered this protein a thousand times less able to trap the calcium-calmodulin complex, so it often arrived in nerve cell nuclei without its cargo.

Next steps for the team include determining how gamma-CaMKII fits into a larger "feedback machine" of nerve cell circuitry published by Dr. Tsien and colleagues in the journal Neuron in 2016.

"This learning machine, controlled by a key set of genes, senses nerve signaling levels and shapes sensory input into memories," says Tsien. Experiments are planned to reveal more details about how the machine "copes with small flaws, including in those the gamma-CaMKII shuttle, but fails when too many problems build up in one or more of its components."
-end-
Along with Tsien, NYU Langone authors were Samuel Cohen, Huan Ma, Benjamin Suutari, Nataniel Mandelberg, Natasha Tirko, Caitlin Mullins, Sandrine Sanchez, Ilona Kats, and Alejandro Salah, all within the Neuroscience Institute at NYU Langone, and the Department of Neuroscience and Physiology. Tsien, Suutari and Kats are also members of the Center for Neural Science at New York University. Making important contributions were authors Ma, Xingzhi He, Yang Wang, Guangjun Zhou, and Shuqi Wang in the Department of Physiology, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.

This work was supported by research grants from the National Institute of General Medical Science (GM058234), the National Institute of Drug Abuse (DA040484), the National Institute of Neurological Disorders and Stroke (NS24067), the National Institute of Mental Health (MH071739); the Druckenmiller, Simons, Mathers, and Burnett Family foundations; and a Medical Scientist Research Service Award (T32GM007308).

NYU Langone Health / NYU School of Medicine

Related Memory Articles:

Taking photos of experiences boosts visual memory, impairs auditory memory
A quick glance at any social media platform will tell you that people love taking photos of their experiences -- whether they're lying on the beach, touring a museum, or just waiting in line at the grocery store.
Think you know how to improve your memory? Think again
Research from Katherine Duncan at the University of Toronto suggests we may have to rethink how we improve memory.
Improving memory with magnets
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives -- without it we would not be able to understand a sentence, or do simple arithmetic.
Who has the better memory -- men or women?
In the battle of the sexes, women have long claimed that they can remember things better and longer than men can.
New study of the memory through optogenetics
A collaboration between Universitat Autònoma de Barcelona and Harvard University pioneers the increase of memory using optogenetics in mice in Spain.
Peppermint tea can help improve your memory
Peppermint tea can improve long-term and working memory and in healthy adults.
A new glimpse into working memory
MIT study finds bursts of neural activity as the brain holds information in mind, overturns a long-held model.
Memory ensembles
For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day.
What is your memory style?
Why is it that some people have richly detailed recollection of past experiences (episodic memory), while others tend to remember just the facts without details (semantic memory)?
Watching a memory form
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered a novel mechanism for memory formation.

Related Memory Reading:

Unlimited Memory: How to Use Advanced Learning Strategies to Learn Faster, Remember More and be More Productive
by Kevin Horsley (Author)

Moonwalking with Einstein: The Art and Science of Remembering Everything
by Joshua Foer (Author)

Memory
by Alan Baddeley (Author), Michael W. Eysenck (Author), Michael C. Anderson (Author)

Improving Memory: Understanding age-related memory loss
by M.D. Kirk R. Daffner (Author)

In Search of Memory: The Emergence of a New Science of Mind
by Eric R. Kandel (Author)

The Memory Book: The Classic Guide to Improving Your Memory at Work, at School, and at Play
by Harry Lorayne (Author), Jerry Lucas (Author)

Memory Man (Memory Man series)
by David Baldacci (Author)

The Happy Mind: A Simple Guide to Living a Happier Life Starting Today
by Kevin Horsley (Author), Louis Fourie (Contributor)

How to Develop a Brilliant Memory Week by Week: 50 Proven Ways to Enhance Your Memory Skills
by Dominic O'Brien (Author)

Quantum Memory: Learn to Improve Your Memory with The World Memory Champion!
by Nightingale-Conant

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...