Nav: Home

Self-assembled energetic coordination polymers based on multidentate pentazole cyclo-N5-

June 22, 2018

Pentazole anion cyclo-N5- is an attractive five-membered ring comprised of only nitrogen atoms. After being recently first synthesized, it is found that the cyclo-N5- anion shows good adaptability to take part in ionic, coordination, and hydrogen bonding interactions and therefor is a possibility to form different types of derivatives.

Ming Lu and co-workers, from Nanjing University of Science and Technology, developed two new energetic coordination polymers based on multidentate pentazole cyclo-N5-, recently published in Science China Materials, 2018, doi: 10.1007/s40843-018-9268-0.

Lu's group was devoted to the development for high energy density materials including polynitrogen and nitrogen-rich compounds for a long time. He said "The cyclo-N5-, as a polynitrogen structure, is high-energy specie that, if properly assembled with other ions, is likely to develop into a new generation of energetic materials, breaking through the energy limits of current energetic materials. "

At present, their group has realized the synthesis of metal-N5? complexes, but the introduction of organic cations or molecules and the formation of organic salts with the assembly of N5- ions have not yet been achieved.

"Although metal-N5- compounds contain energy and can explode in certain condition, the overall energy level of them is always very low. It is necessary to introduce energetic organic ions to increase the energetic performance", he says, "At the same time, the design ability and different physicochemical properties of organic cations provides a possibility to develop other new substances such as coordination polymers."

Coordination to form polymer is emerging as a new technology for modifying or enhancing the properties of the existed energetic substances in energetic materials area. "However, compared with metal ions, organic ions often have weaker coordination ability." he says, "It is still challenging to introduce organic ions to coordinate with N5- by ion exchange."

To achieve the purpose of organic ions instead of metal ions, the strategy for using metal ions with weak coordination effect is a good choose. Lu emphasized "It is essential to the crystal growth and ion/ligand exchange processes of coordination polymer."

Prof. Lu, as the leader of the research group, tells us "Previous experience motivates us to employ sodium salt as precursor because we have prepared more than 5 kinds of metal salts from it." By self-assembling, anhydrous coordination polymers

(NaN5)5[(CH6N3)N5](N5)3- (CP 1) and (NaN5)2(C2H4N4) (CP 2) have been synthesized.

Lu says, "Experimentally, we used methanol solution containing sodium pentazole salt and guanidine or amino-triazole. Colorless crystals can be obtained by maintaining the solutions in air at room temperature naturally for several days, with more than 80% yield."

He adds "The evaporation rate of the solvent is more critical because the coordination capacity is relatively weak. If solvent evaporates too quickly, it is very likely that the coordination polymer will not be formed. Only mixed salts can be obtained."

The DSC curves for both CPs show that their decomposing temperatures are at 118.4 and 126.5°C, respectively. He highlights "These values are 7.4 and 15.5°C higher than precursor sodium pentazole salt."

"This observation indicates that coordination and hydrogen bonding interactions are beneficial for stabilizing the N5 ring." Zhang adds.

Detonation heat, detonation velocity and detonation pressure are key parameters of energetic materials. The calculated nitrogen content (>66%) and heat of formation (>800 kJ mol-1) of the two CPs are significantly higher than those of traditional energetic materials (TNT, RDX and HMX).

The detonation heat of CP 2 (1.65 kcal g-1) is higher than that of TNT, RDX, HMX and CL-20 (about 1.5 kcal g-1). Detonation and detonation pressures (7,863 m s-1, 26.44 GPa) are higher than TNT.

"If we can improve the density of organic salts, it is very promising to reach level of HMX and CL-20." Lu said. "The detonation performance of CP 1 is poor, which is attributed to the low density caused by its porous structure" he added, "From another point of view; this porous structure can load other small molecules to enhance the energy performance."

"Two breakthroughs, removing coordinated water and combining with organic ligands, are achieved here. It makes pentazole derivative a step closer to energetic materials." Lu concluded.
This research was funded by the National Natural Science Foundation of China (11702141, 21771108 and U1530101).

See the article: Peng-Cheng Wang, Yuan-Gang Xu, Qian Wang, Yan-Li Shao, Qiu-Han Lin and Ming Lu. "Self-assembled energetic coordination polymers based on multidentate pentazole cyclo-N5-" Sci. China Mater. 2018, doi: 10.1007/s40843-018-9268-0.

Science China Press

Related Energy Articles:

Wave energy researchers dive deep to advance clean energy source
One of the biggest untapped clean energy sources on the planet -- wave energy -- could one day power millions of homes across the US.
A new energy source within the cells
Scientists at the Centre for Genomic Regulation in Barcelona, Spain, find evidence of a new energy source within cell nucleus.
MIT Energy Initiative welcomes Exelon as member for clean energy research
MIT Energy Initiative announces that national energy provider Exelon joins MITEI as a member to focus research support through MITEI's Low-Carbon Energy Centers.
Clean energy from water
Fuel cells generate electrical energy through a chemical reaction of hydrogen and oxygen.
Determinant factors for energy consumption and perception of energy conservation clarified
Change in lifestyle is a key component to realizing a low-carbon society.
Lactate for brain energy
Nerve cells cover their high energy demand with glucose and lactate.
Evidence shows low energy sweeteners help reduce energy intake and body weight
Use of low energy sweeteners (LES) in place of sugar, in children and adults, leads to reduced calorie intake and body weight - and possibly also when comparing LES beverages to water -- according to a review led by researchers at the University of Bristol published in the International Journal of Obesity today.
ASU professor honored for work on energy and social aspects of energy policy
Martin 'Mike' Pasqualetti, an Arizona State University professor and an expert on energy and social components of energy development, will be awarded 2015 Alexander and Ilse Melamid Memorial Medal by the American Geographical Society.
Stanford's Global Climate and Energy Project awards $9.3 million for energy research
GCEP has awarded scientists at Stanford and four other universities funding to develop a suite of promising energy technologies.
Energy efficiency upgrades ease strain of high energy bills in low-income families
Low-income families bear the brunt of high-energy costs and poor thermal comfort from poorly maintained apartment buildings.

Related Energy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".