# Origin Quantum Company and LQCC have successfully simulated a 64-qubit circuit

June 22, 2018The quantum computer is a device that bases on the principles of quantum mechanics. Compared with classical bits, qubits can be at the superposition between "0" and "1", so the quantum computer which is composed of qubits can calculate and store more data. Adding additional qubits can exponentially increase the computational capabilities of quantum computers, and the computational capabilities of quantum computers may soon surpass state-of-the-art supercomputers for certain tasks.

The last few years have seen a series of significant advances in quantum computing, in particular regarding superconducting quantum chips with reports of devices of 20 and 50 qubits with good fidelity. In the meantime, great progress has also been made with semiconductor quantum chips. "Quantum supremacy" claims that the limit of classical computers would be transcended if a device of 50 qubits were made. Direct simulations of 50 qubits take about 16-PB of RAM to store the full vectors. Google and IBM teams have proposed some efficient methods for simulating the low-depth circuit which raised this limit to 56 qubits (e.g., deferral of entanglement gates and Feynman path method).

Origin Quantum Company cooperating with the team of Prof. Guang-Can Guo presented a scheme of simulation based on transforming two-qubit gates, achieving a 64-qubit simulation of a universal random circuit of depth 22 using a 128-node cluster, and 56- and 42-qubit circuits on a single PC. In particular, by transforming several control-Z (CZ) gates to measurement and single-qubit gates, the circuit is mapped onto an additional 2n sub-circuits. These sub-circuits are formed by two blocks without any qubit entanglement between them, thereby converting an N qubit simulation problem into a group of N/2 The results of all the sub-circuits are then added together to reconstruct the final state. They also estimated that a 72-qubit circuit of depth 23 can be simulated in about 16 hours on a supercomputer identical to that used by the IBM team.

Their work enables simulating more qubits with less hardware burden and provides a new perspective for classical simulations. It only needs a single PC with GTX-1080Ti to calculate 42- and 56-qubit circuits. A 64-qubit circuit was simulated with a 128-node computer cluster, but the hardware resources they used have been greatly reduced compared with other methods.

Due to the complexity growing exponentially with qubit number and depth, the simulation of more than 50 qubits will always have an upper bound in depth. Nevertheless, the simulation of more qubits system with small depth still plays an important role for the study of quantum algorithms such as QFT and unsupervised machine learning. Moreover, the partitioning scheme could be combined with other simulation methods (e.g., Feynman path integral), to further reduce the complexity. These improvements may help to realize the simulation of many other quantum algorithms.

-end-

Zhao-Yun Chen, Qi Zhou, Cheng Xue, Xia Yang, Guang-Can Guo, Guo-Ping Guo. 64-qubit quantum circuit simulation. *Science Bulletin*, 2018, doi: 10.1016/j.scib.2018.06.007

https://www.sciencedirect.com/science/article/pii/S2095927318302809

Science China Press

**Related Quantum Computers Articles:**

Blanket of light may give better quantum computers

Researchers from DTU Physics describe in an article in Science, how--by simple means -- they have created a 'carpet' of thousands of quantum-mechanically entangled light pulses.

Researchers from DTU Physics describe in an article in Science, how--by simple means -- they have created a 'carpet' of thousands of quantum-mechanically entangled light pulses.

One step closer future to quantum computers

Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.

Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.

Dartmouth research advances noise cancelling for quantum computers

The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.

The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.

Spreading light over quantum computers

Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.

Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.

Newfound superconductor material could be the 'silicon of quantum computers'

Newly discovered properties in the compound uranium ditelluride show that it could prove highly resistant to one of the nemeses of quantum computer development -- the difficulty with making such a computer's memory storage switches, called qubits, function long enough to finish a computation before losing the delicate physical relationship that allows them to operate as a group.

Newly discovered properties in the compound uranium ditelluride show that it could prove highly resistant to one of the nemeses of quantum computer development -- the difficulty with making such a computer's memory storage switches, called qubits, function long enough to finish a computation before losing the delicate physical relationship that allows them to operate as a group.

Quantum computers to clarify the connection between the quantum and classical worlds

Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.

Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.

The best of both worlds: how to solve real problems on modern quantum computers

Researchers at the US Department of Energy's (DOE) Argonne National Laboratory and Los Alamos National Laboratory, along with researchers at Clemson University and Fujitsu Laboratories of America, have developed hybrid algorithms to run on size-limited quantum machines and have demonstrated them for practical applications.

Researchers at the US Department of Energy's (DOE) Argonne National Laboratory and Los Alamos National Laboratory, along with researchers at Clemson University and Fujitsu Laboratories of America, have developed hybrid algorithms to run on size-limited quantum machines and have demonstrated them for practical applications.

A new theory for trapping light particles aims to advance development of quantum computers

Researchers have developed a new protocol for ensuring the stability of data when photons are stored for extended periods of time.

Researchers have developed a new protocol for ensuring the stability of data when photons are stored for extended periods of time.

Improving quantum computers

For decades, experts have predicted that quantum computers will someday perform difficult tasks, such as simulating complex chemical systems, that can't be done by conventional computers.

For decades, experts have predicted that quantum computers will someday perform difficult tasks, such as simulating complex chemical systems, that can't be done by conventional computers.

A new hope of quantum computers for factorizations of RSA with a thousand-fold excess

Universal quantum computers are still in its infancy that cannot achieve practical applications (code-cracking) in near term.

Universal quantum computers are still in its infancy that cannot achieve practical applications (code-cracking) in near term.

## Best Science Podcasts 2019

We have hand picked the**best science podcasts**for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

**Now Playing: TED Radio Hour**

**Rethinking Anger**

Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.

**Now Playing: Science for the People**

**#538 Nobels and Astrophysics**

This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.