Important step towards a computer model that predicts the outcome of eye diseases

June 22, 2018

Our eye hosts a powerful biological computer, the retina. Understanding how the retina transforms images from the outside world into signals that the brain can interpret would not only result in insights into brain computations, but could also be useful for medicine. As machine learning and artificial intelligence develop, eye diseases will soon be described in terms of the perturbations of computations performed by the retina. Do we have enough knowledge of retinal circuits to understand how a perturbation will affect the computations the retina performs? An international team of scientists has addressed this question in a set of experiments combining genetics, viral and molecular tools, high-density microelectrode arrays, and computer models. The work shows that their newly developed model of the retina can predict with high precision the outcome of a defined perturbation. The work is an important step towards a computer model of the retina that can predict the outcome of retinal diseases.

Vision starts in the retina, where photoreceptor cells capture the light that falls on the eye and transduce it into neuronal activity. Ganglion cells, the output neurons of the retina, then send the visual signals to the brain. However, the retina is much more than just a camera and a cable: Between photoreceptors and ganglion cells, the retina contains intricate neuronal circuits, which are assembled from many different neuronal cell types. These circuits process the incoming signals in a complex way and extract important features of the visual scene. At the output level of the retina, the computations of the retinal circuits result in ~30 different neuronal representations of the visual scene: these are then transmitted in parallel to the brain. Thus, the retina acts like a powerful computing device, shaping visual representation in a profound way.

To understand the mechanisms of vision and to predict the outcomes of visual diseases, it is essential to understand how the ~30 retinal output channels represent the visual world, and how their different functional properties arise from the architecture of the retinal circuits. To address this question, a team of scientists from the Friedrich Miescher Institute (FMI), the Institute of Molecular and Clinical Ophthalmology Basel (IOB), ETH Zurich, and the Ecole Normale Supérieure perturbed a specific retinal circuit element while studying how this perturbation changes the functional properties of the different retinal output channels.

Antonia Drinnenberg, a former graduate student from Botond Roska's group, and lead author of the paper, developed a method to control the activity of horizontal cells. Horizontal cells are a retinal circuit element that provides feedback inhibition at the first visual synapse between photoreceptors and bipolar cells. The method, which involved a specific set of viruses, transgenic mice, and engineered ligand-gated ion channels, allowed her to switch the feedback at the first visual synapse on and off. To measure the effects of this perturbation in the retinal output, she used high density microelectrode arrays developed in Andreas Hierlemann's group and recorded the electrical signals of hundreds of ganglion cells simultaneously. Surprisingly, the perturbation caused a large set of different changes in the output of the retina. "We were astonished by the variety of effects that we observed due to the perturbation of a single, well-defined circuit element," says Drinnenberg. "At first, we suspected that technical issues might underlie this variety." However, after measuring the signals in thousands of ganglion cells and in defined retinal output channels, it became clear that the variety in the horizontal cell contributions that were measured must arise from the specific architecture of the retinal circuitry.

How can a single element of the retinal circuitry lead to such a variety of effects? Felix Franke, co-first author of the paper, and Rava A. da Silveira, a senior author, built a computer model of the retina. The model simulated the different pathways that the signal can take through the retina, and enabled the team to investigate if our current understanding of the retinal circuitry could account for the effects they observed during the experiments. While studying the behavior of the model, the researchers found that the model could reproduce the entire set of changes that they had measured experimentally. In addition, the team found that the model made five further predictions about the role of horizontal cells, which they had previously not seen in the data. "We were surprised to see that the model went further than what we had in mind at the time we built it," says Franke. "All additional predictions turned out to be correct when we conducted additional experiments to test them."

"One way to test our understanding of the retina is to perturb one of its elements, measure all the outputs, and see if our 'understanding', which is a model, can predict the observed changes," explains da Silveira. "The next step is to use the model to predict the outcome of eye diseases," adds Roska.
-end-
Original publication

Drinnenberg A*, Franke F*, Morikawa RK, Ju?ttner J, Hillier D, Hantz P, Hierlemann A, da Silveira RA**, Roska B**. (2018) How diverse retinal functions arise from feedback at the first visual synapse. Neuron (advance online publication; https://doi.org/10.1016/j.neuron.2018.06.001).

* These authors contributed equally to this work.

** Corresponding authors

Institute of Molecular and Clinical Ophthalmology Basel

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.