Nav: Home

About face: Special collection of papers celebrates research on how the human face forms

June 22, 2018

Our faces can reveal a lot about us, and now scientists are revealing a lot about faces. PLOS Genetics announces a special collection of papers to highlight recent advances in our understanding of how faces form, curated by Seth Weinberg of the University of Pittsburgh, and colleagues. The collection, entitled "Craniofacial genetics: where have we been and where are we going," publishes June 22 and features research on the development of the face and skull, facial birth defects and normal facial variation.

Research into the genetics that shape the face has made tremendous advances in recent years. Along with the mouse, the zebrafish has emerged as a powerful model for studying facial development. Many of the cellular processes that form the human face are highly similar in zebrafish, which have the added benefits of transparent embryos that can be examined under the microscope and multiple genetic tools for exploring genetic factors that control facial development.

Scientists have also identified numerous genes that contribute to facial malformations and syndromes through the use of rapid, high-throughput genomic technologies. These technologies have pinpointed mutations that cause both rare and common conditions such as cleft lip and palate disorders, in diverse populations. Scientists are beginning to see a growing list of genes in which genetic variants contribute to multiple diseases, and now must untangle the mechanisms that result in these individual malformations.

The study of facial variation has revealed that the multitude of human faces holds more variety than the faces of other animals, or other human body parts. By understanding the genetics underlying small differences in faces, scientists may one day be able to predict a person's face from the genome. This technology would enable us to construct faces from DNA collected at crime scenes, from the bones of our ancient ancestors or from an unborn child. All of these applications have considerable ethical and societal implications.

Major breakthroughs are occurring in the field of craniofacial genetics, and the curators of the special collection expect that this research will continue to accelerate. PLOS Genetics seeks to feature these breakthroughs through the publication of this collection and to advance the understanding of the genetics of facial formation so that these discoveries will ultimately benefit the public.
-end-
In your coverage please use this URL to provide access to the freely available:

Craniofacial Genetics Collections page:

http://collections.plos.org/craniofacial-genetics

Editorial article "Craniofacial genetics: Where have we been and where are we going?" in PLOS Genetics:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007438

Editorial Citation: Weinberg SM, Cornell R, Leslie EJ (2018) Craniofacial genetics: Where have we been and where are we going? PLoS Genet 14(6): e1007438. https://doi.org/10.1371/journal.pgen.1007438

Editorial Funding: The authors received no specific funding for this article.

Editorial Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Genetics Articles:

Improve evolution education by teaching genetics first
Evolution is a difficult concept for many students at all levels, however, a study publishing on May 23 in the open access journal PLOS Biology has demonstrated a simple cost-free way to significantly improve students' understanding of evolution at the secondary level: teach genetics before you teach them evolution.
Study unravels the genetics of childhood 'overgrowth'
Researchers have undertaken the world's largest genetic study of childhood overgrowth syndromes -- providing new insights into their causes, and new recommendations for genetic testing.
Could genetics influence what we like to eat?
Gene variants could affect food preferences in healthy people, according to a new study.
Reverse genetics for rotavirus
Osaka University scientists generate a new plasmid-based reverse genetics system for rotaviruses.
The genetics behind being Not Like Daddy
A common strategy to create high-yielding plants is hybrid breeding.
Understanding the genetics of human height
A large-scale international study involving more than 300 researchers, published today in Nature, heralds the discovery of 83 genetic variations controlling human height.
Animal genetics: The bovine heritage of the yak
Though placid enough to be managed by humans, yaks are robust enough to survive at 4,000 meters altitude.
New genetics clues into motor neuron disease
Researchers at the University of Queensland have contributed to the discovery of three new genes which increase the risk of motor neuron disease, opening the door for targeted treatments.
Your best diet might depend on your genetics
If you've ever seen a friend have good results from a diet but then not been able to match those results yourself, you may not be surprised by new findings in mice that show that diet response is highly individualized.
Using precision-genetics in pigs to beat cancer
Because of their similarities to people, using new technology in pigs turn up as a valuable alternative to rodent models of cancer.

Related Genetics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...