Nav: Home

Detecting metabolites at close range

June 22, 2018

A novel concept for a biosensor of the metabolite known as lactate, combines an electron transporting polymer with lactate oxidase, which is the enzyme that specifically catalyzes the oxidation of lactate. Lactate is associated with critical medical conditions so its detection is important for healthcare.

Biosensor performance hinges on electron transfer between sensing electrode and enzyme: this increases when there is a decrease in the distance between enzyme active sites and the electrode surface. Redox enzymes have emerged as optimal components for biosensors because their ability to realize electron transfer complements their specificity in target binding and catalytic activity.

Typical efforts to achieve good electrical communication involve convoluted electrode modifications and additional mediators, which are redox active molecules that shuttle electrons between electrode and enzyme. Therefore, biosensors to date have been limited in terms of their target metabolites and environments. This has hampered their use for applications across diverse fields such as biotechnology, agriculture, and biomedicine. Instead, their main use has been restricted to in vitro electrochemical biosensors for glucose monitoring in diabetes patients.

To fill this gap, Sahika Inal from KAUST and collaborators from Imperial College London and the University of Cambridge, UK, have developed a biosensor that can be adapted in a micron-scale transistor configuration to detect any metabolite of interest.

At the heart of the proof-of-concept device, the researchers have conjugated lactate oxidase with a so-called organic electrochemical transistor polymer. This electron transporting polymer simultaneously acts as an efficient switch and a powerful signal amplifier: it can accept electrons from the enzymatic reaction and undergo multiple reduction reactions through several redox active sites.

This polymer also bears hydrophilic side chains that facilitate intramolecular interactions with lactate oxidase, which brings the enzyme close to the transducing material. This promotes electrical communication and, consequently, enhances the polymer sensitivity toward lactate. These polymer-enzyme interactions also avoid modifying the electrode surface and use of a mediator, "which simplifies device fabrication," explains Inal. She adds that, unlike previous biosensors, the device does not require a reference electrode, which provides design flexibility.

"Our biggest challenge was identifying the right material for this sensor," says Inal. After this first hurdle, her team encountered issues when interpreting the biosensor response. "This device surprised us with its high efficiency," she says.

Inal's team at KAUST is currently working on a design that will detect metabolites in different environments. "An obvious application for this system is a lab-on-a-chip lactate sensor," she adds. Such a sensor would be especially useful in wearable lactate monitoring devices. Moreover, this new system also opens new options for how enzymes can be exploited to generate and store energy.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Enzymes Articles:

Fungal enzymes team up to more efficiently break down cellulose
Cost-effectively breaking down bioenergy crops into sugars that can then be converted into fuel is a barrier to commercially producing sustainable biofuels.
How enzymes communicate
Freiburg scientists explain the cell mechanism that transforms electrical signals into chemical ones.
Pac-Man-like CRISPR enzymes have potential for disease diagnostics
UC Berkeley researchers have found 10 new variants of the Cas13a enzyme, the Pac-Man of the CRISPR world, that hold promise for disease diagnostics.
Hydrogen production: This is how green algae assemble their enzymes
Researchers at Ruhr-Universit├Ąt Bochum have analyzed how green algae manufacture complex components of a hydrogen-producing enzyme.
New studies unravel mysteries of how PARP enzymes work
A component of an enzyme family linked to DNA repair, stress responses, and cancer also plays a role in enhancing or inhibiting major cellular activities under physiological conditions, new research shows.
Understanding enzymes
A new tool can help researchers more accurately identify enzymes present in microbiomes and quantify their relative abundances.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Research finds enzymes essential for DNA repair
Scientists at The Australian National University and Heidelberg University in Germany have found an essential component in the DNA repair process which could open the door to the development of new cancer drugs.
New step towards clean energy production from enzymes
Oxygen inhibits hydrogenases, a group of enzymes that are able to produce and split hydrogen.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.

Related Enzymes Reading:

Enzymes: What the Experts Know
by Tom Bohager (Author)

Enzymes: The Key to Health, Vol. 1 (The Fundamentals)
by Howard F., Jr. Loomis (Author)

The Enzyme Factor
by Hiromi Shinya MD (Author)

Enzymes: Go With Your Gut: More Practical Guidelines For Digestive Enzymes
by Karen DeFelice (Author)

Enzymes: The Missing Link to Health
by Susan M. Lark M.D. (Author)

The Healing Power of Enzymes
by Dicqie Fuller (Author), DicQie Fuller PH.D. D.Sc. (Author)

The Enzyme Advantage: For Health Care Providers And People Who Care About Their Health
by Dr. Howard F Loomis Jr. (Author), Arnold Mann (Author)

Enzyme Nutrition
by Dr. Edward Howell (Author)

Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis
by Robert A. Copeland (Author)

The Enzyme Cure: How Plant Enzymes Can Help You Relieve 36 Health Problems (Natural Solutions' Magazine Guides)
by Lita Lee (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...