Nav: Home

Experiments of the Russian scientists in space lead to a new way of 3D-bioprinting

June 22, 2018

Thanks to the research of magnetic levitation in the conditions of microgravity, a new technology for 3D printing of biological tissues was developed. In the future, this technology will help to create radiation-sensitive biological constructs and repair damaged tissues and human organs. The results are published in Biofabrication. The technology is based on the results of the experimental studies which were supported by Russian Science Foundation (RSF).

There are many methods of 3D-bioprinting. Most of them use a certain layer-by-layer framework of the biological tissues. The resulting bulk material is then sent to the incubator where the cultivation continues. There are ways in which biological objects are developed without the use of multi-layer approach, for example, magnetic bioprinting, when the cell material is directed to the desired location by means of the magnetic fields. In this case, the cells should be labeled in some way with magnetic nanoparticles.

The researchers from the 3D BioprintingSolutions company in collaboration with the other Russian and foreign scientists developed the new method of bioprinting that allows to create 3D- biological objects without the use of layer-by-layer approach and magnetic labels. This new method was developed with the contribution from the Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS).

"During the period from 2010 to 2017, a series of unique experimental studies were carried out aboard the Russian Orbital Segment of the International Space Station at the experimental setup "Coulomb Crystal". The main element of that device is an electromagnet that creates a special inhomogeneous magnetic field in which the structures of the diamagnetic particles (they are magnetized against the direction of the magnetic field) can be formed in the microgravity conditions," as explained by one of the authors, Mikhail Vasiliev, head of laboratory of dusty plasma diagnostics in JIHT RAS.

In their experimental study, the JIHT researchers described how small charged particles behave in the magnetic field of a special shape under the microgravity conditions, including zero gravity. In addition, the scientists developed a mathematical model of this process based on the methods of molecular dynamics. These results explain how to obtain homogeneous and extended three-dimensional structures consisting of the thousands of the particles.

The conventional methods of magnetic 3D-bioprinting had a number of limitations associated with the gravity. To reduce the influence of the gravitational forces, one can increase the power of magnets that control the magnetic field. However, this will complicate the bioprinter considerably. The second way is to reduce the gravity. A group of scientists from 3D BioprintingSolutions used this approach. The new method is called "formative three-dimensional biofactory" and it allows you to create three-dimensional biological structures not in layers but immediately from all the sides. The researchers applied the experimental data and the results of the mathematical modeling obtained by the JIHT RAS scientists to control the shape of such structures.

"The results of the Coulomb crystal experiment on the study of the formation of the spatially ordered structures led to the development of a new method for the formative 3D-biofactory of the tissue-like structures based on the programmable self-assembly of the living tissues and organs under the conditions of gravity and microgravity by means of an inhomogeneous magnetic field," summarized the author.

Bioprinters based on the new technology application will be able to create various biological constucts that can be used, for example, to estimate the adverse effects of the space radiation on the health of the astronauts in the long-term space missions. In addition to that, according to the authors, this technology will be able to restore the function of the damaged tissues and organs in the future.
-end-


AKSON Russian Science Communication Association

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Earth's Magnetic Field Secrets: An Illusion Mixed With Reality
by Dennis Brooks (Author)

NOW 2 kNOW Electro-Magnetic Fields
by Dr. T G D'Alberto (Author)

Know Your Magnetic Field: Change Your Thinking, Change Your Life.
by William E. Gray (Author)

Power Tools for Health: How Pulsed Magnetic Fields (Pemfs) Help You
by Msc William Pawluk MD (Author), Caitlin Layne (Author)

Cosmic Magnetic Fields (Cambridge Astrophysics)
by Philipp P. Kronberg (Author)

Magnetic Fields: Expanding American Abstraction, 1960s to Today
by Valerie Cassel Oliver (Author), Lowery Stokes Sims (Author), Erin Dziedzic (Editor), Melissa Messina (Editor)

Electricity and Magnetism: An Introduction to the Theory of Electric and Magnetic Fields, 2nd edition
by Oleg D. Jefimenko (Author)

North Pole, South Pole: The Epic Quest to Solve the Great Mystery of Earth’s Magnetism
by Gillian Turner PhD (Author)

Earth's Magnetic Field: Understanding Geomagnetic Sources from the Earth's Interior and its Environment (Space Sciences Series of ISSI)
by Claudia Stolle (Editor), Nils Olsen (Editor), Arthur D. Richmond (Editor), Hermann J. Opgenoorth (Editor)

Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions (Astrophysics and Space Science Library)
by Hermann Lühr (Editor), Johannes Wicht (Editor), Stuart A. Gilder (Editor), Matthias Holschneider (Editor)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Unintended Consequences
Human innovation has transformed the way we live, often for the better. But as our technologies grow more powerful, so do their consequences. This hour, TED speakers explore technology's dark side. Guests include writer and artist James Bridle, historians Yuval Noah Harari and Edward Tenner, internet security strategist Yasmin Green, and journalist Kashmir Hill.
Now Playing: Science for the People

#499 Technology, Work and The Future (Rebroadcast)
This week, we're thinking about how rapidly advancing technology will change our future, our work, and our well-being. We speak to Richard and Daniel Susskind about their book "The Future of Professions: How Technology Will Transform the Work of Human Experts" about the impacts technology may have on professional work. And Nicholas Agar comes on to talk about his book "The Sceptical Optimist" and the ways new technologies will affect our perceptions and well-being.