Biologists unravel tangled mystery of plant cell growth

June 22, 2020

When cells don't divide into proper copies of themselves, living things fail to grow as they should. For the first time, scientists now understand how a protein called TANGLED1 can lead to accurate cell division in plants.

Inside cells are structures called microtubules, which act like highways for moving proteins and organelles. They're also critical for separating DNA after it has been duplicated to eventually make two cells from one.

"You can't live without microtubules, and plants can't either," said Carolyn Rasmussen, an assistant professor of plant cell biology at UC Riveride. "Because they're so important, where they go and how they move has to be carefully controlled."

Rasmussen and colleagues discovered that the TANGLED1 protein performs this microtubule controlling function by binding the microtubules together like glue. Their description of how TANGLED1 operates was published today in the .

By adding together microtubules and TANGLED1 in a test tube, the team saw surprising interactions between them. Often, proteins can only bundle microtubules at very specific angles -- 40 degrees or less. TANGLED1 can grab microtubules from any angle and link them together.

"To the best of my knowledge, this is the first plant protein observed in vitro with this characteristic," Rasmussen said.

The protein's ability to capture and stabilize microtubules is likely critical for being able to separate daughter cells properly. Cell divisions at the wrong angle lead to big problems such as the formation of tumors.

Animal cells normally need to remain attached to a surface, and their division is controlled to ensure the cells remain there. If a cell becomes unattached to the surface after division, that could mark the beginning of a tumor.

Rasmussen's team included Pablo Martinez, Sean O'Leary, and Antonia Zhang from UC Riverside; biochemists Ram Dixit and Rachappa Balkunde from Washington University; and mathematician Kenneth Brakke from Susquehanna University.

Now that the team has seen TANGLED1 at work in vitro, the next step is to observe it in a living cell. If they can gain a deeper understanding of the genes that control plant cell division, these genes might be manipulated to produce higher yield crops, such as bigger ears of corn or more grain.

An additional benefit of this research is the insight it could yield into human cellular processes. When there are defects in the cell's ability to move material around on microtubules, diseases such as Alzheimer's disease or cancer could follow.

Research on these diseases is often conducted on human cell lines or animal models. However, there are similarities between the microtubule bundling behavior of TANGLED1 in plants and microtubule binding proteins in humans, making it easier to learn more by characterizing both at the same time.

"People say plants don't get cancer, which is generally true," Rasmussen said. "But sometimes when you have a different perspective on a related question -- in this case, what controls the spatial positioning of cell division -- you can see things that are hard to see in other model systems."
-end-


University of California - Riverside

Related Microtubules Articles from Brightsurf:

Unbalanced microtubule networks launch establishment of neuronal polarity
Prof. MENG Wenxiang's group from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences recently reported a new mechanism by which microtubule networks instruct neuronal polarity.

Biologists unravel tangled mystery of plant cell growth
When cells don't divide into proper copies of themselves, living things fail to grow as they should.

Cellular train track deformities shed light on neurological disease
A new technique allows researchers to test how the deformation of tiny train track-like cell proteins affects their function.

Parkinson's disease protein structure solved inside cells using novel technique
The top contributor to familial Parkinson's disease is mutations in leucine-rich repeat kinase 2 (LRRK2), whose large and difficult structure has finally been solved, paving the way for targeted therapies.

POSTECH developed self-assembled artificial microtubule like LEGO building blocks
Professor Kimoon Kim and his research team identified a new hierarchical self-assembly mechanism

How cells assemble their skeleton
Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport.

Researchers unlock secrets of cell division, define role for protein elevated in cancer
Researchers at Princeton University have successfully recreated a key process involved in cell division in a test tube, uncovering the vital role played by a protein that is elevated in over 25% of all cancers.

Computer model described the dynamic instability of microtubules
Researchers of Sechenov University together with their colleagues from several Russian institutes studied the dynamics of microtubules that form the basis of the cytoskeleton and take part in the transfer of particles within a cell and its division.

A simple way to control swarming molecular machines
The swarming behavior of about 100 million molecular machines can be controlled by applying simple mechanical stimuli such as extension and contraction.

Cancer tumours form surprising connections with healthy brain cells
Anti-epileptic medicine can curb the dangerous communication and possibly be part of future treatment.

Read More: Microtubules News and Microtubules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.