Bread mould avoids infection by mutating its own DNA

June 22, 2020

Whilst most organisms try to stop their DNA from mutating, scientists from the UK and China have discovered that a common fungus found on bread actively mutates its own DNA as a way of fighting virus-like infections.

All organisms mutate all of the time. You were born with between ten and a hundred new mutations, for example. Many do little harm but, if they hit one of your genes, mutations are much more likely to be harmful than beneficial. If harmful enough they contribute to genetic diseases.

Whilst mutations can enable species to adapt, most mutations are harmful, and so evolutionary biologists have postulated that natural selection will always act to reduce the mutation rate.

While prior data has supported this view, recent work by Professor Laurence Hurst of the Milner Centre for Evolution at the University of Bath (UK) and Sihai Yang, Long Wang and colleagues at Nanjing University (China) have found that Neurospora crassa, a type of bread mould, is a remarkable exception to the rule.

Professor Hurst, Director of the Milner Centre for Evolution at the University of Bath, said: "Many organisms have a problem with transposable elements, otherwise called jumping genes.

"These are virus-like bits of DNA that insert themselves into their host's DNA, copy themselves and keep on inserting - hence the name jumping genes.

"Organisms have found different ways of combatting this nuisance, many of which try to prevent the transposable elements from expressing their own genes. Neurospora has evolved a different solution: it hits them exceptionally hard with mutations to rapidly degrade them."

The study, published in Genome Biology, found that Neurospora distinguishes jumping genes from its own DNA by detecting two or more copies of the same bit of DNA. The fungus then attacks the jumping genes by mutating them in a process called Repeat-Induced Point mutation (RIP).

To understand how RIP affects the fungus's own DNA, the team sequenced the whole genome from both parents and offspring for many strains of Neurospora to see how many mutations could be found and where they were in the DNA.

Overall, they found that each base pair in the Neurospora genome has about a one in a million chance of mutating every generation; over a hundred times higher than any non-viral life on the planet.

Professor Hurst said: "This was a real surprise to us - any organism that hits its own genes with that many mutations is likely one that will not persist for very long. It would be like opening up the back of a watch, stabbing at all the cog wheels that look a bit similar and expecting the watch to still function!

"Our findings show that Neurospora has not only a high mutation rate but is also a massive outlier. It appears to use RIP to destroy transposable elements but at a cost, with considerable collateral damage.

"This organism thus goes against the standard theory for mutation rate evolution which proposes that selection should always act to reduce the mutational burden.

"It is the exception that proves the rule."
-end-


University of Bath

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.