Catalyzing a green future

June 22, 2020

A metal organic framework (MOF)-based water splitting photocatalyst, developed at KAUST, has brought researchers a step closer to generating clean hydrogen fuel using sunlight.

"Using solar energy to efficiently make green fuels is the ultimate goal for many catalysis researchers," says Jorge Gascon, director of the KAUST Catalysis Center, who led the research. However, it remains challenging to find efficient, long-lived, low-cost water-splitting photocatalysts.

In Gascon's team, the aim is to use MOFs to find sustainable photocatalytic water splitting materials. "We work with MOFs because they are like a LEGO construction toy--you have different parts with which you can play and vary to get desired properties," says Nikita Kolobov, a member of Gascon's team.

MOFs consist of metal ions connected by carbon-based organic linkers in a highly regular and repeating two- or three-dimensional array. By varying the metal and the organic component, a diverse family of materials can be made. "This modularity makes MOFs an excellent platform for developing a fundamental understanding of photocatalytic processes," Gascon says. "We can evaluate new concepts in photocatalysis that may be difficult or impossible to develop and evaluate using other classes of materials."

For their latest work, Gascon, Kolobov, Amandine Cadiau and their colleagues created a MOF that used titanium metal ions with H4TBAPy, an organic linker known to absorb energy from a broad spectrum of sunlight. By combining H4TBAPy with titanium, the team aimed to create a material that could efficiently put that energy to use.

The titanium in the light-activated MOF had the ideal energy levels for the hydrogen production part of photocatalytic water splitting, the team showed. "The organic part of the MOF acted as an antenna that collected light and transmitted that energy to the metal node, which activated it to perform catalytic transformations," Kolobov says.

"Although the new MOF's hydrogen evolution reaction activity was modest compared to some inorganic semiconductors, its performance is already among the best titanium-based MOF materials," Kolobov says. "MOFs are still in their infancy when it comes to photocatalytic applications," he adds. "We believe the modular approach toward their construction offers unlimited possibilities for performance improvement, and we are taking the first steps in this direction."

"Every step to better understand how catalysts work under light illumination is important," Gascon says. "Our main objective at this moment is to come up with new MOF structures able to efficiently perform overall water splitting."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Titanium Articles from Brightsurf:

From lab to industry? Ideally ordered porous titania films, made at scale
Researchers from Tokyo Metropolitan University have realized high-throughput production of thin, ordered through-hole membranes of titanium dioxide.

A 40-year-old catalyst unveils its secrets
Activity of the industrial catalyst TS-1 relies on titanium pairs / important discovery for catalyst development

Direct observation of a single electron's butterfly-shaped distribution in titanium oxide
A research team led by Nagoya University has observed the smeared-out spatial distribution of a single valence electron at the centre of a titanium oxide molecule, using synchrotron X-ray diffraction and a new Fourier synthesis method also developed by the team.

Titanium oxide-based hybrid materials promising for detoxifying dyes
Photoactive materials have become extremely popular in a large variety of applications in the fields of photocatalytic degradation of pollutants, water splitting, organic synthesis, photoreduction of carbon dioxide, and others.

Scientists have created new nanocomposite from gold and titanium oxide
ITMO University researchers together with their colleagues from France and the USA have demonstrated how a femtosecond laser can be used to tune the structure and nanocomposite properties for titanium dioxide films filled with gold nanoparticles.

Skoltech scientists developed a new cathode material for metal-ion batteries
Researchers from the Skoltech Center for Energy Science and Technology (CEST) created a new cathode material based on titanium fluoride phosphate, which enabled achieving superior energy performance and stable operation at high discharge currents.

First view of hydrogen at the metal-to-metal hydride interface
University of Groningen physicists have visualized hydrogen at the titanium/titanium hydride interface using a transmission electron microscope.

The properties of thin titanium oxide films have been studied
Some titanium oxides are known for their unique properties, such as increased photocatalytic activity (i.e. they effectively use light to speed up chemical reactions).

Adding copper strengthens 3D-printed titanium
Successful trials of titanium-copper alloys for 3D printing could kickstart a new range of high-performance alloys for medical device, defence and aerospace applications.

Fatigue-resistant, high-performance cooling materials enabled by 3D printing
High-performance solid-state elastocaloric cooling materials with exceptional fatigue resistance are made possible by 3D printing a nickel-titanium based alloy, researchers report.

Read More: Titanium News and Titanium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.