Proper location of solid feed can improve nutrient intake and growth of dairy calves prior to weaning

June 22, 2020

Philadelphia, June 22, 2020 - Dairy producers are feeding dairy calves more milk before weaning, as research has demonstrated that greater milk consumption provides short- and long-term benefits for calves. Encouraging solid feed consumption by calves on high-milk diets, however, can be challenging. Researchers have concluded that gradual weaning solves this problem more effectively than abrupt weaning, but more research is needed to optimize the process. In a recent article appearing in the Journal of Dairy Science, scientists from the University of Guelph studied gradual weaning of 60 calves divided into four groups using two weaning programs and two feed placement locations.

It is unknown whether a step-wise reduction in milk consumption during gradual weaning is better than a more continuous reduction. "It was predicted that small, frequent reductions in milk would be a more natural weaning process and cause less stress," said lead investigator Trevor DeVries, PhD, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada. "Therefore, reducing milk by larger quantities in a step-wise weaning program may be more noticeable to the calf and result in more behavioral indicators of stress, such as increased activity and vocalizations." Improving weaning transition, optimizing solid feed intake to prepare for a solid diet, increasing weight gain, and reducing stress are all important considerations.

The University of Guelph study compared continuous reduction of milk during weaning with step-wise reduction, as well as varying the location of the solid feed. Solid feed was placed next to the calves' milk source or on the opposite side of the pen, next to their water source. Because cows associate locations with the quality of food located there, the researchers hypothesized that placing the solid feed near the highly desirable milk would encourage solid feed intake.

Contrary to expectations, both weaning programs resulted in similar solid feed consumption, weight gain, and behavioral indicators of stress. As hypothesized, however, calves fed solid feed near their milk supply consumed more solid feed, milk, and water prior to weaning, resulting in 10 percent higher average daily weight gain during that time period. These calves also had greater feed efficiency in the second week of weaning and showed fewer stress-related behaviors once weaning concluded. This work highlighted that further research is needed on weaning strategies, water placement, and how these apply in group housing situations.
-end-


Elsevier

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.