Tsetse flytraps: Biotechnology for Africa's rural population

June 22, 2020

The tsetse fly occurs in large regions of sub-Saharan Africa. The flies feed on human and animal blood, transmitting trypanosoma in the process - small, single-cell organisms that use the flies as intermediate host and cause a dangerous inflammation of the lymph and nervous system in both animals and humans. There is no vaccination for this sleeping sickness; untreated, it usually ends in death. In agriculture, particularly cattle breeding, sleeping sickness - or trypanosomiasis - causes enormous damages in the form of sick and dead animals.

In addition to the use of insecticides, the insects are also caught in traps. The attractants used include substances that also occur in cattle urine and which attract tsetse flies. These substances (3-ethylphenol and 3-propylphenol, or 3-EP and 3-PP for short) are synthesized out of oil derivatives or also extracts from cashew nut shells through chemical processes. However, both processes are complex and neither practical nor affordable for rural communities in Africa.

In the LOEWE collaborative research project MegaSyn, molecular biologists at Goethe University have now succeeded in producing 3-EP and 3-PP in genetically modified brewer's yeast (Saccharomyces cerevisiae). They used a yeast strain into which they had previously introduced a new metabolic pathway, and changed its sugar metabolism. This enabled the yeasts to produce similarly high concentrations of 3-EP and 3-PP as those which occur in cow urine.

Doctoral student Julia Hitschler from the Institute for Molecular Biosciences at Goethe University explains: "Our yeasts could ideally grow in Africa in nutrient solutions on the basis of plant waste products, food rests or fodder rests. This would make production of the attractant almost cost-free. We are currently looking for partners to help us test our yeasts locally and provide them to the local population."

The potential for the new yeasts go beyond the tsetse attractants, add Professor Eckhard Boles, who heads the project. In the future, other substances that have been previously won through oil or coal could be produced through the new yeasts: "Our yeasts could be developed to produce other alkylphenols besides 3-EP and 3-PP. These alkylphenols could be used for the production of lubricant additives or surface-active substances in cleaning agents."
-end-
Publication: Julia Hitschler, Martin Grininger, Eckhard Boles: Substrate promiscuity of polyketide synthase enables production of tsetse fly attractants 3-ethylphenol and 3-propylphenol by engineering precursor supply in yeast. Scientific Reports, https://doi.org/10.1038/s41598-020-66997-5

Further information:

Prof. Dr. Eckhard Boles
Institute for Molecular Biosciences
Goethe University Frankfurt
Tel: +49 69 798 29513
e.boles@bio.uni-frankfurt.de
http://www.bio.uni-frankfurt.de/boles

Current news about science, teaching, and society can be found on GOETHE-UNI online

Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet: http://www.goethe-universitaet.de

Publisher: The President of Goethe University Editor: Dr. Markus Bernards, Science Editor, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531, bernards@em.uni-frankfurt.de

Goethe University Frankfurt

Related Sleeping Sickness Articles from Brightsurf:

You can train your brain to reduce motion sickness
Visuospatial training exercises can train the brain to reduce motion sickness, providing a potential remedy for future passengers riding in autonomous vehicles.

'Morning sickness' is misleading and inaccurate, new study argues
The term 'morning sickness' is misleading and should instead be described as nausea and sickness in pregnancy, argue researchers led by the University of Warwick who have demonstrated that these symptoms can occur at any time of the day -- not just the morning.

Research team finds possible new approach for sleeping sickness drugs
Using ultra-bright X-ray flashes, a team of researchers has tracked down a potential target for new drugs against sleeping sickness: The scientists have decoded the detailed spatial structure of a vital enzyme of the pathogen, the parasite Trypanosoma brucei.

Insight into the neglected tropical disease sleeping sickness
Researchers have shed light on how the parasite which causes sleeping sickness multiples inside its host.

Severe morning sickness associated with higher risk of autism
Children whose mothers had hyperemesis gravidarum -- a severe form of a morning sickness -- during pregnancy were 53% more likely to be diagnosed with autism spectrum disorder, according to Kaiser Permanente research published in the American Journal of Perinatology.

Scientists identify a key gene in the transmission of deadly African sleeping sickness
An international team of life scientists has identified a key gene in the transmission of African sleeping sickness -- a severe disease transmitted by the bite of an infected, blood-sucking tsetse fly, which is common in Sub-Saharan Africa.

Marijuana for morning sickness? It's not great for baby's brain
With a growing number of states legalizing recreational or medical marijuana, more women are using the drug during pregnancy, in part due to its reported ability to relieve morning sickness.

New therapeutic approach to combat African sleeping sickness
Scientists working in a range of disciplines joined forces to identify a new approach to combat African sleeping sickness.

Sleeping sickness parasite uses multiple metabolic pathways
Parasitic protozoa called trypanosomes synthesize sugars using an unexpected metabolic pathway called gluconeogenesis, according to a study published December 27 in the open-access journal PLOS Pathogens by David Horn of the University of Dundee in the UK, and colleagues.

Decoding sleeping sickness signals could aid quest for treatments
Scientists have discovered how the parasite that causes sleeping sickness initiates a physical change in order to spread the disease.

Read More: Sleeping Sickness News and Sleeping Sickness Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.