New tools will enhance the specificity of imaging in the mouse brain

June 22, 2020

Here's the big question in modern neuroscience: how does structure and activity in the brain relate to function? One of the major ways neuroscientists study the dynamics of those relationships is by measuring neural activity through fluorescent imaging in the mouse brain, a process made difficult by the density of brain tissue and its interwoven and overlapping nerve fibers. Researchers at the Buck Institute, in a team effort with collaborators at the University of California, San Francisco, have developed tools that make it easier to ask that big question by making the imaging of neural circuits easier and more precise. Results are published in Neuron.

Led by Buck assistant professor Jennifer Garrison, PhD, researchers utilized the ribosome, a large "machine" within the cell that makes proteins, to anchor sensors in the cell body, or 'soma'. Neurons have a unique architecture, with fibers that branch off the soma called axons and dendrites. These fibers often account for over 90% of the cell's volume. When fluorescent proteins spread throughout all parts of a neuron, and that neuron is embedded in brain tissue that is densely packed with other neurons and their intermingled branches, it can be tricky to separate signals from individual cells.

In this study researchers showed that a nanobody tethered to a subunit of the ribosome can be used to trap green fluorescent protein (GFP) in the soma and exclude it from axons and dendrites, enabling direct visualization of previously undetectable low levels of fluorescence. They also tethered genetically-encoded calcium sensors (GCaMPs) to the ribosome to trap them in the cell body. Calcium channels open when a neuron is activated, making changes in calcium levels a proxy for neuronal activity. The new riboGCaMP tool can track calcium dynamics within the somas of intermingled neurons, while eliminating contaminating cross-talk from tangled networks of nerve fibers in the tissue.

"It's a twist that adds functionality to the existing molecular imaging toolbox used by neuroscientists," said Garrison, adding that current imaging techniques often require the use of many analytic tools to clean up imaging data after it is collected. "In the mouse it solves the problem of getting rid of that background fluorescence and spurious activity coming from surrounding axons and dendrites. We think this will be widely useful for the community, which is exciting."

Garrison says ribo-GCaMP can be used for long-term imaging experiments in the mouse brain, given that the ribosome is reliably expressed over time in the cell body. "It's possible to go back and image the same neurons for up to six months, which is really helpful when you are imaging in a live animal - it allows us to longitudinally monitor neuronal activity the same animal, rather than looking at different cohorts over time."

The tool also works in the nematode worm C. elegans, enabling whole-brain imaging with faster kinetics and brighter fluorescence. Currently most imaging in the worm brain employ GCaMPs localized in the nucleus, which is farther from the synapse where neuronal transmission occurs. "In both worm and mouse brains, you can measure neuronal activity at the population level. In worms, you can look at all neuronal dynamics at the level of the whole-brain, which is key to understand how neural circuits function" said Garrison.
-end-
Citation: Soma-targeted imaging of neural circuits by ribosome tethering DOI: /10.1016/j.neuron.2020.05.005

Other Buck Institute researchers involved in the study include Heeun Jang and Aygul Subkhangulova. University of California, San Francisco (UCSF) contributors include Yiming Chen, Perry Spratt, Seher Kosar, David E. Taylor, Rachel Essner, Ling Bai, David E. Leib, Tzu-Wei Kuo, Yen-Chu Lin Mili Patel, Saul Kato, Evan H. Feinberg, Kevin J. Bender and Zachary A. Knight.

This work was supported by grants from the National Institutes of Health: T32 AG000266, DP2DK109533, R01DK106399, R01NS094781, R35GM119828, S10OD017993, DP2MH119426, R01NS109060, R01DA035913, R01MH112729, R21MH112117. Further support was provided by the New York Stem Cell Foundation, the American Diabetes Association Pathway Program, the American Federation for Aging Research, the Glenn Foundation for Medical Research, the E.M. Ziegler Foundation for the Blind, the Rita Allen Foundation, the McKnight Foundation, the Alfred P. Sloan Foundation, the Brain and Behavior Research Foundation, the Sandler Foundation, the Esther A. and Joseph Klingenstein Foundation, the Whitehall Foundation, the Simons Foundation, the UCSF Diabetes Center, the UCSF Nutrition Obesity Research Center and the Howard Hughes Medical Institute.

About the Buck Institute for Research on Aging

At the Buck, we aim to end the threat of age-related diseases for this and future generations. We bring together the most capable and passionate scientists from a broad range of disciplines to study mechanisms of aging and to identify therapeutics that slow down aging. Our goal is to increase human health span, or the healthy years of life. Located just north of San Francisco, we are globally recognized as the pioneer and leader in efforts to target aging, the number one risk factor for serious diseases including Alzheimer's, Parkinson's, cancer, macular degeneration, heart disease, and diabetes. The Buck wants to help people live better longer. Our success will ultimately change healthcare. Learn more at: https://buckinstitute.org

Buck Institute for Research on Aging

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.