A Hint Why Hormone Therapy For Prostate Cancer Ultimately Fails

June 22, 1998

The drugs commonly given to help men beat prostate cancer may actually help the cancer grow under some conditions, a University of Rochester Cancer Center team shows in a study published in the June 23 issue of the Proceedings of the National Academy of Sciences. The work provides a possible explanation for why most forms of hormone therapy, a common treatment for prostate cancer, almost always lose effectiveness after one or two years.

The team showed that drugs known as anti-androgens, often given to men to shrink the prostate and kill the cancerous cells within, can trigger the protein that makes the prostate and its cancer grow.

"It's a real shocker, and it's still quite controversial, but our experiments show that this happens," says Chawnshang Chang, lead investigator and George Whipple Professor of Pathology and Urology. "These compounds are capable of stimulating what they're supposed to be preventing." He stresses, though, that much more research is needed to confirm the results, and that it's too early to consider altering the standard treatment patients receive today.

The prostate is a peach-sized organ between the bladder and rectum that contributes fluids to semen. Prostate cancer, which strikes slightly more often in men than breast cancer does in women, kills about 39,000 men in the U.S. each year. The growth of the prostate and cancerous cells there rely on the androgen receptor, the protein turned on by testosterone and other "male" hormones, known as androgens. The receptor triggers genes that give men facial hair, deep voices and other masculine traits, including prostate growth. In women estrogen hormones are responsible for developing female characteristics. While both are present in everyone's bodies, scientists have long thought that the two groups of hormones turn on very distinct sets of genes.

For several decades physicians have treated men with advanced prostate cancer with castration therapy, anti-androgens, or estrogen-like compounds to shrink the prostate. But within a couple of years the treatments lose effectiveness and the prostate starts growing again, mysteriously. Since the therapy usually comes after doctors have tried other treatment options, such as surgery, brachytherapy, or radiation, its failure often marks a turning point in the spread of the disease.

In the PNAS paper Chang and colleagues show that anti-androgenic compounds can cross the line and turn on the androgen receptor. Working with human prostate cells in a cell culture, the scientists showed that anti-androgens, including hydroxyflutamide, bicalutamide (casodex), and cyproterone acetate, can trigger the androgen receptor, which in turn spurs the growth of the prostate and its cancerous cells.

In another PNAS paper last month the team showed that estrogen can also turn on the androgen system and even seems to play a critical role in the formation of the male reproductive system. In partial-androgen-insensitivity syndrome, a person has both an X and a Y chromosome and is genetically a man, but because of a single mutation in the androgen receptor the person has severe genital abnormalities and lives as a woman. A few thousand people in the U.S have the disease. The team showed that the mutation contributes to the syndrome by knocking out estrogen's ability to turn on the androgen receptor.

Chang, a well-known expert on the androgen receptor, was the first one to clone the protein back in 1988. Last month he showed that another molecule must be present for estrogen to turn on the receptor. The molecule, known as co-factor AR70, offers a new target against prostate cancer, Chang says. AR70 is one of several androgen receptor co-factors that the team has identified as working with other molecules to turn on the androgen receptor.

"The goal is to develop a tissue-specific anti-androgenic compound," says Chang, "so that we can turn on or off the androgen system selectively. For instance, perhaps we can stimulate hair growth but not damage the reproductive system. Identifying these co-factors is a step toward such specificity."

Also working on the project, which was funded by the National Institute of Health, were post-doctoral researchers Hiroshi Miyamoto and Shuyuan Yeh of the University, and medical oncologist George Wilding of the University of Wisconsin.

University of Rochester

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.