UC Davis researchers discover receptor pathway for C-reactive protein and its effects

June 23, 2005

(SACRAMENTO, Calif.) -- For the first time, scientists have discovered how C-reactive protein, or CRP, is able to access endothelial cells. The UC Davis researchers' findings will be published in the July issue of Arteriosclerosis, Thrombosis, and Vascular Biology, one of the American Heart Association's leading journals.

CRP is a known risk marker for heart disease and, in a study published earlier this year, UC Davis researchers Ishwarlal Jialal and Sridevi Devaraj found that endothelial cells also produce CRP, which is increased 100-fold when cytokines are secreted by human macrophages, a key finding that helps to explain how plaque formation is initiated.

Devaraj and Jialal have now discovered how CRP affects endothelial cells, cells that line the cerebral and coronary arteries, and promotes plaque rupture, leading to heart attacks and strokes. CRP appears to bind to a family of immunoglobulin-processing receptors known as Fc-gamma receptors.

"In this study we convincingly show that CRP binds to two members of the Fc-gamma receptor family, CD64 and CD32, and that by blocking these receptors with specific antibodies, we can reverse the detrimental effects of CRP on endothelial cells," said Jialal, the Robert E. Stowell Chair of Experimental Pathology and director of the Laboratory of Atherosclerosis and Metabolic Research at UC Davis Medical Center.

"This is the first time that anyone has shown how CRP is able to get into the human aortic endothelial cells. Fc-gamma receptors CD32 and CD64 are the culprits," said Sridevi Devaraj, associate professor of pathology at UC Davis School of Medicine and Medical Center.

Work at UC Davis and other institutions has shown that CRP induces endothelial cell dysfunction, thus promoting plaque rupture. CRP causes endothelial cells to produce less nitric oxide and to increase the number of cell adhesion molecules. This, in turn, allows damaging leukocytes to enter the vessels. Devaraj and Jialal also showed, in a previous study, that CRP induces endothelial cells to produce plasminogen activator inhibitor, or PAI-1, which promotes clot formation. In addition, recent studies suggest that plaque tissue also produces CRP.

"In future studies, we will examine the precise pathways by which these receptors are able to mediate CRP effects so that more specific therapies can be developed to target inflammation," said Jialal.

Coronary heart disease is the nation's single leading cause of death. According to the American Heart Association, approximately 1.2 million Americans will have a coronary attack this year. Almost a half million of these people will die. About 7.1 million Americans have survived a heart attack. And another 6.4 million Americans have experienced chest pain or discomfort due to reduced blood supply to the heart.

Reducing the concentration of CRP with drugs, such as statins, has been shown to reduce cardiovascular events. Treating other risk factors such as smoking, obesity, high blood pressure with angiotensin receptor blockers and diabetes with thiazolidinediones and metformin are also shown to reduce the levels of CRP.
-end-
Terry W. Du Clos, professor of medicine, Department of Veterans Affairs Medical Center and The University of New Mexico School of Medicine, Albuquerque, contributed to this study.

This study had grant support from the National Institutes of Health.

Copies of all news releases from UC Davis Health System are available on the Web at http://www.ucdmc.ucdavis.edu/newsroom

University of California - Davis Health System

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.