Children's Hospital Oakland scientists first to discover new source for harvesting stem cells

June 23, 2009

June 23, 2009-Oakland, Calif. - A groundbreaking study conducted by Children's Hospital & Research Center Oakland is the first to reveal a new avenue for harvesting stem cells from a woman's placenta, or more specifically the discarded placentas of healthy newborns. The study also finds there are far more stem cells in placentas than in umbilical cord blood, and they can be safely extracted for transplantation. Furthermore, it is highly likely that placental stem cells, like umbilical cord blood and bone marrow stem cells, can be used to cure chronic blood-related disorders such as sickle cell disease, thalassemia, and leukemia.

The study, led by Children's Hospital & Research Center Oakland scientists Frans Kuypers, PhD, and Vladimir Serikov, PhD, will be the feature story in the July 2009 issue of Experimental Biology and Medicine. The doctors and their team made the discoveries by harvesting term placentas from healthy women undergoing elective Cesarean sections. "Yes, the stem cells are there; yes, they are viable; and yes, we can get them out," declared Dr. Kuypers.

Stem cells are essentially blank cells that can be transformed into any type of cell such as a muscle cell, a brain cell, or a red blood cell. Using stem cells from umbilical cord blood, Children's Hospital Oakland physicians have cured more than 100 kids with chronic blood-related diseases through their sibling donor cord blood transplantation program, which began in 1997. However, according to the American Cancer Society, each year at least 16,000 people with serious blood- related disorders are not able to receive the bone marrow or cord blood transplant they need because they can't find a match.

Dr. Kuypers explained that even when a patient receives a cord blood transplant, there may not be enough stem cells in the umbilical cord to successfully treat their disorder. Placentas, however, contain several times more stem cells than umbilical cord blood. "The greater supply of stem cells in placentas will likely increase the chance that an HLA (human leukocyte antigen) matched unit of stem cells engrafts, making stem cell transplants available to more people. The more stem cells, the bigger the chance of success," said Dr. Kuypers.

Drs. Kuypers and Serikov have also developed a patent-pending method that will allow placental stem cells to be safely harvested and made accessible for transplantation. The process involves freezing placentas in a way that allows them to later be defrosted and suffused with a compound that enables the extraction of viable stem cells. The method will make it possible for companies to gather, ship and store placentas in a central location. "We're looking for a partnership with industry to get placenta-derived stem cells in large quantities to the clinic," said Dr. Kuypers. He adds that much more research and grant funding are needed to explore the maximum potential of this latest discovery. He remains encouraged. "Someday, we will be able to save a lot more kids and adults from these horrific blood disorders."
-end-
About Children's Hospital & Research Center Oakland

Children's Hospital & Research Center Oakland is Northern California's only freestanding and independent children's hospital. Children's is the leader in many pediatric specialties including neonatology, cardiology, neurosurgery and intensive care. The hospital is a designated Level 1 pediatric trauma center and has the largest pediatric critical care facility in the region. Children's Hospital has 190 licensed beds, 201 hospital-based physicians in 30 specialties, more than 2,611 employees and an operating budget of $312 million. Children's research arm, Children's Hospital Oakland Research Institute, has about 300 staff members and an annual budget of more than $49 million. Primary research funding comes from the National Institutes of Health. The institute is a leader in translational research, bench discoveries to bedside applications, developing new vaccines for infectious diseases and discovering new treatment protocols for previously fatal or debilitating conditions such as cancers, sickle cell disease and thalassemia, diabetes, asthma, HIV/AIDS, pediatric obesity, nutritional deficiencies, birth defects, hemophilia and cystic fibrosis.

Children's Hospital & Research Center Oakland

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.