Mechanism for stress-induced epigenetic inheritance uncovered in new study

June 23, 2011

Researchers at RIKEN have uncovered a mechanism by which the effects of stress in the fly species Drosophila are inherited epigenetically over many generations through changes to the structure of chromatin, the material that makes up the cell nucleus. Published in the journal Cell, the results highlight the role of the transcription factor dATF-2 in chromatin assembly, marking a major advance in our understanding of non-Mendelian inheritance.

Recent years have seen growing interest in the phenomenon of epigenetic inheritance: the idea that our genome, through epigenetic tags and other structural modifications, transmits more information than the sequence of letters encoded in its DNA base pairs alone. Stresses of various kinds have been shown to induce such epigenetic change, yet the underlying mechanisms involved remain unknown.

To clarify these mechanisms, the researchers investigated the activity of activation transcription factor-2 (ATF-2), a member of a family of transcription factors which regulate gene expression in response to changes in the cellular environment. Earlier research had suggested that in the absence of stress, ATF-2 plays a role in silencing certain genes through the formation of heterochromatin, a tightly-packed variety of chromatin whose state is epigenetically heritable. When the stress is turned on, ATF-2 changes its function and induces gene expression.

Studying mutations to the ATF-2 gene in Drosophila (dATF-2), the researchers observed a disruption to the heterochromatin structure and reduced methylation of histone proteins, the main component of chromatin (Fig. 1). Further analysis revealed that heat shock and osmotic stress during early embryogenesis results in phosphorylation of dATF-2 and triggers its release from the heterochromatin.

Most interestingly, the researchers discovered that the disruption to heterochromatin caused by the release of dATF-2 was transmitted to the next generation of cells, without any change to their DNA sequences (Fig. 2). In the case of heat shock, sustained stress over multiple generations resulted in the altered chromatin state being inherited by subsequent generations as well (Fig. 3). The findings thus provide the first example of multigenerational transmission of stress-induced epigenetic change, highlighting the role played by ATF-2 and opening promising new avenues for further study.
-end-


RIKEN

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.