Nav: Home

Astronomers explain why a star is so hot right now

June 23, 2015

Astronomers have solved a mystery over small, unusually hot blue stars, 10 times hotter than our Sun, that are found in the middle of dense star clusters.

The international team found the so-called blue hook stars throw off their cool outer layers late in life because they are rotating so rapidly, making them more luminous than usual.

"We've solved an old puzzle. These stars are only half the mass of our Sun yet we could not explain how they became so luminous," said team member Dr Antonino Milone, from The Australian National University (ANU) Research School of Astronomy and Astrophysics.

"As the star was forming billions of years ago from a disc of gas in the congested centre of the star cluster, another star or stars must have collided with the disc and destroyed it."

The research, published in Nature, gives new insights into star formation in the early Universe in the crowded centres of clusters. Star clusters are rare environments in the Universe, in which many stars are born at the same time.

The team studied the globular cluster Omega Centauri, the only cluster visible to the naked eye, which contains around 10 million stars in close proximity to one another.

The model shows the formation of stars in clusters do not all form at once, said co-author Dr Aaron Dotter, also from ANU Research School of Astronomy and Astrophysics.

"These blue stars must form in a second generation of star formation," he said. "Our new explanation is quite simple, and it hangs together really nicely."

Usually the large disc of ionised gas around a newly-forming star locks its rotation through magnetic effects. For the progenitors of blue hook stars, however, an early destruction of its disc allows the stars to spin up as the gas comes together to form a star.

Because its high rotation rate partially balances the inward force of gravity, the star consumes its hydrogen fuel more slowly and evolves differently throughout its life.

The blue hook phase of its life occurs after more than 10 billion years, when the star has consumed nearly all its hydrogen and begins burning the hotter fuel helium. The different evolution processes leave it with a heavier core which burns brighter than typical helium-burning stars.

Australian National University

Related Star Formation Articles:

Star's birth may have triggered another star birth, astronomers say
Radio images give new evidence that a jet of material from one young star may have triggered the gas collapse that started another young star.
Organic compound found in early stages of star formation
Scientists seeking to understand the origins of life have found a new organic compound in the material from which a star like the Sun is forming.
Speeding star gives new clues to breakup of multi-star system
Three stars have been discovered that now hold the record as the youngest-known examples of a super-fast star category.
Astronomers find unexpected, dust-obscured star formation in distant galaxy
Pushing the limits of the largest single-aperture millimeter telescope in the world, and coupling it with gravitational lensing, University of Massachusetts Amherst astronomer Alexandra Pope and colleagues report that they have detected a surprising rate of star formation, four times higher than previously detected, in a dust-obscured galaxy behind a Frontier Fields cluster.
Hubble discovery of runaway star yields clues to breakup of multiple-star system
A gravitational tussle, ended with a multi-star system breaking apart and at least three stars being ejected in different directions.
Cosmic environments and their influence in star formation
In a joint collaboration between the California Institute of Technology and the University of California, Riverside, astronomers have performed an extensive study of the properties of galaxies within filaments formed at different times during the age of the universe.
Investigating star formation is UMass Amherst researcher's mission
University of Massachusetts Amherst astrophysicist Stella Offner, who has received a five-year, $429,000 faculty early career development (CAREER) grant from National Science Foundation (NSF), plans to use it not only to study how stars are born, but also to develop interactive online astronomy 'tours' to enhance K-12 science education in local schools.
Black-hole-powered jets forge fuel for star formation
Astronomers using ALMA have discovered a surprising connection between a supermassive black hole and the galaxy where it resides.
Rings around young star suggest planet formation in progress
Rice University astronomers and their international colleagues have for the first time mapped gases in three dark rings around a distant star with the powerful ALMA radio telescope.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.

Related Star Formation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.