Nav: Home

Successful first observations of galactic center with GRAVITY

June 23, 2016

The GRAVITY instrument is now operating with the four 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT - http://www.eso.org/public/teles-instr/paranal/) , and even from early test results it is already clear that it will soon be producing world-class science.

GRAVITY is part of the VLT Interferometer. By combining light from the four telescopes it can achieve the same spatial resolution and precision in measuring positions as a telescope of up to 130 metres in diameter. The corresponding gains in resolving power and positional accuracy -- a factor of 15 over the individual 8.2-metre VLT Unit Telescopes -- will enable GRAVITY to make amazingly accurate measurements of astronomical objects.

One of GRAVITY's primary goals is to make detailed observations of the surroundings of the 4 million solar mass black hole at the very centre of the Milky Way [1]. Although the position and mass of the black hole have been known since 2002, by making precision measurements of the motions of stars orbiting it, GRAVITY will allow astronomers to probe the gravitational field around the black hole in unprecedented detail, providing a unique test of Einstein's general theory of relativity.

In this regard, the first observations with GRAVITY are already very exciting. The GRAVITY team [2] has used the instrument to observe a star known as S2 as it orbits the black hole at the centre of our galaxy with a period of only 16 years. These tests have impressively demonstrated GRAVITY's sensitivity as it was able to see this faint star in just a few minutes of observation.

The team will soon be able to obtain ultra-precise positions of the orbiting star, equivalent to measuring the position of an object on the Moon with centimetre precision. That will enable them to determine whether the motion around the black hole follows the predictions of Einstein's general relativity -- or not. The new observations show that the Galactic Centre is as ideal a laboratory as one can hope for.

"It was a fantastic moment for the whole team when the light from the star interfered for the first time -- after eight years of hard work," says GRAVITY's lead scientist Frank Eisenhauer from the Max Planck Institute for Extraterrestrial Physics in Garching, Germany. "First we actively stabilised the interference on a bright nearby star, and then only a few minutes later we could really see the interference from the faint star -- to a lot of high-fives." At first glance neither the reference star nor the orbiting star have massive companions that would complicate the observations and analysis. "They are ideal probes," explains Eisenhauer.

This early indication of success does not come a moment too soon. In 2018 the S2 star will be at its closest to the black hole, just 17 light-hours away from it and travelling at almost 30 million kilometres per hour, or 2.5% of the speed of light. At this distance the effects due to general relativity will be most pronounced and GRAVITY observations will yield their most important results [3]. This opportunity will not be repeated for another 16 years.
-end-
Notes

[1] The centre of the Milky Way, our home galaxy, lies on the sky in the constellation of Sagittarius (The Archer) and is some 25 000 light-years distant from Earth.

[2] The GRAVITY consortium consists of: the Max Planck Institutes for Extraterrestrial Physics (MPE) and Astronomy (MPIA), LESIA of Paris Observatory and IPAG of Université Grenoble Alpes/CNRS, the University of Cologne, the Centro Multidisciplinar de Astrofísica Lisbon and Porto (SIM), and ESO.

[3] The team will, for the first time, be able to measure two relativistic effects for a star orbiting a massive black hole -- the gravitational redshift and the precession of the pericentre. The redshift arises because light from the star has to move against the strong gravitational field of the massive black hole in order to escape into the Universe. As it does so it loses energy, which manifests as a redshift of the light. The second effect applies to the star's orbit and leads to a deviation from a perfect ellipse. The orientation of the ellipse rotates by around half a degree in the orbital plane when the star passes close to the black hole. The same effect has been observed for Mercury's orbit around the Sun, where it is about 6500 times weaker per orbit than in the extreme vicinity of the black hole. But the larger distance makes it much harder to observe in the Galactic Centre than in the Solar System.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

LinksContacts

Frank Eisenhauer
GRAVITY Principal Investigator, Max Planck Institute for Extraterrestrial Physics
Garching, Germany
Tel: +49 (89) 30 000 3563
Email: eisenhau@mpe.mpg.de

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Hannelore Hämmerle
Public Information Officer, Max Planck Institute for Extraterrestrial Physics
Garching, Germany
Tel: +49 (89) 30 000 3980
Email: hannelore.haemmerle@mpe.mpg.de

ESO

Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.