Nav: Home

Lasers carve the path to tissue engineering

June 23, 2016

Future medicine is bound to include extensive tissue-engineering technologies such as organs-on-chips and organoids - miniature organs grown from stem cells. But all this is predicated on a simple yet challenging task: controlling cellular behavior in three dimensions. So far, most cell culture approaches are limited to two-dimensional environments (e.g. a Petri dish or a chip), but that neither matches real biology nor helps us sculpt tissues and organs. Two EPFL scientists have now developed a new method that uses lasers to carve out paths inside biocompatible gels to locally influence cell function and promote tissue formation. The work is published in Advanced Materials.

In the body, cells grow in 3D microspaces that are specific to each type of tissue - liver, kidney, lung, heart, brain etc. These microenvironments are important because they control the behavior of the cells, e.g. how they interact with other parts of the tissue to help it develop, function, and repair. In addition, the microenvironments themselves are very dynamic and adaptable, sending the cells various biochemical signals to adapt their behavior to physiological changes.

This means that any successful merging of biology and engineering must first be able to grow cells in custom-built yet biologically active 3D spaces. Working at EPFL's Institute of Bioengineering, Matthias Lütolf and his PhD student Nathalie Brandenberg have developed a method that uses a laser to cut three-dimensional pathways and networks for cells inside a hydrogel scaffold that matches their natural environment.

The method combines lasers with microfluidics - the science of controlling fluids in micrometer-sized spaces. The scientists used focalized short-pulsed lasers, which can generate enough power to create tiny tunnels in different gels already used in cell biology and tissue engineering. The laser can be applied before or even during 3D cell culture, meaning that the cells can be controlled in "real time" to match their natural growth.

Meanwhile, microfluidics have become the key to tissue engineering. The technology offers unprecedented control over the cells' microenvironment, as it can emulate the complex adaptability of biological microenvironments, allowing behavior-adjusting signals to be delivered to the cells in the form of drugs or other compounds.

As such, microfluidics are extensively used to build cell culture systems for growing cells. However, microfluidics have been largely limited to 2D cell culture applications, and are not easy to apply for long-term cell culture. Some efforts to use microfluidics in 3D cultures have proven successful, but they involve multiple labor-intensive steps that render them inefficient for standardized applications. But by combining microfluidics with the flexibility of laser carving (or "photoablation"), Brandenberg and Lütolf have brought ease, robustness and versatility to the approach.

"Our method addresses the limitations of previous approaches," says Lütolf. "It is fully compatible with 3D cell cultures, and can be applied with a wide range of materials, different geometries, and can introduce or change existing microfluidic networks during the course of an experiment to control cells in an unprecedented way."
-end-
This work was funded by the EU framework 7 HEALTH research programme PluriMes and an ERC grant.

Reference

Brandenberg N, Lutolf MP. In Situ Patterning of Microfluidic Networks in 3D Cell-Laden Hydrogels. Advanced Materials 23 June 2016. DOI: 10.1002/adma.201601099

Ecole Polytechnique Fédérale de Lausanne

Related Engineering Articles:

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.