Nav: Home

Preparing for a new relationship: Coral and algae interactions explored

June 23, 2016

Coral cannot survive on its own for long. It needs to create a symbiotic relationship with algae to survive. Algae provides approximately 90 percent of the energy coral needs, which means that their partnership must be preserved in order to keep the coral healthy. In order to protect coral, algae, and the marine species that live in reef environments, scientists need to know more about how the symbiotic relationship between coral and algae begins. In collaboration with Amin Mohamed and Prof. David Miller at James Cook University, Prof. Noriyuki Satoh and Dr. Chuya Shinzato of the Okinawa Institute of Science and Technology Graduate University (OIST), found changes in coral gene expression when introduced to algae. They have recently published their results in Molecular Ecology.

The only time when coral does not have an algae symbiont is during the larval stage. When the symbiont is introduced, which happens naturally in the wild, the coral absorbs the algae and the algae continues to live within the coral cells for the remainder of the coral's life.

"We wanted to investigate the gene expression changes when the symbiosis starts in the coral larvae," Dr. Chuya Shinzato, co-author and group leader of OIST's Marine Genomics Unit.

Previously, it was thought that in the time when the algae were introduced to the coral, there were minor changes in gene expression. However, using the latest technology in genome analysis and checking many different time points following the introduction of the algae, the team discovered that changes in gene expression did occur in coral during symbiosis, but these were only detected at four hours after the first interaction with the symbiont. Past studies had missed this window of gene expression, as they had looked only at later time points: 12 and 48 hours after first interaction.

"This study succeeds in analysing the very early stages of coral symbiosis," Shinzato said. "We saw suppression of the genes related to mitochondrial metabolism and protein synthesis, which means that the metabolism stops working for a short time."

This means that the coral has to adapt and react to the introduction of the symbiont, instead of passively accepting the algae.

"The coral has to change its cell conditions to adjust to the symbiosis," Shinzato said. "Coral needs to prepare to welcome the symbiont. Then, the mutual relationship can begin."

The researchers also found evidence to support that the symbiosome - the membrane around the symbiont - is derived from the host phagosome - the membrane around the entire cell that is meant to catch and kill pathogens. This affects the functionality of the phagosome in its role in catching and killing pathogens.

"Normally, the phagosome kills the pathogens," Shinzato said. "But in this symbiotic relationship, the phagosome function is stunted."

These discoveries help in understanding the process of symbiosis, as well as the continuing symbiotic relationship between coral and algae. This is particularly important for protecting coral. As the sea temperatures rise with climate change, even by one or two degrees, the symbiotic relationship can be destroyed and the symbiont is expelled from the coral, which leaves the coral without its biggest energy source. This is called coral bleaching and is a real threat to the coral reef ecosystems. Understanding the symbiotic relationship can help scientists to fight against coral bleaching.

"About 25 percent of marine species live in the coral reefs," Shinzato said. "If coral reefs disappear, it means that those marine species will also disappear. The symbiotic relationship is the basis for these ecosystems, which is why it is so important to study. We must understand the mechanism of coral symbiosis in order to combat coral bleaching."
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...