Nav: Home

Self-folding origami

June 23, 2017

Plastic with a thousand faces: A single piece of Nafion foil makes it possible to produce a broad palette of complex 3D structures. In the journal Angewandte Chemie, researchers describe how they use simple chemical "programming" to induce the foil to fold itself using origami and kirigami principles. These folds can be repeatedly "erased" and the foil can be "reprogrammed".

We have all seen the cranes and lotus flowers produced from a sheet of paper by practiced hands. Origami is the traditional Japanese art of folding that transforms paper into complex three-dimensional structures without the use of adhesive. Kirigami is a related technique in which the paper is strategically cut before folding. Both of these techniques have found application in modern technology.

Adebola Oyefusi and Jian Chen from the University of Wisconsin - Milwaukee (USA) have now presented a new variation on this technique. They chemically "programmed" Nafion foil so that heat causes it to fold itself into complex three-dimensional forms. The foil can also be "deprogrammed". Nafion is a polymer that can "remember" its shape, so that a stretched piece of foil will return to its initial form upon heating.

The secret to this trick is this: Nafion can be protonated in an acidic environment and deprotonated in a basic one. When protonated, stretched Nafion shrinks at temperatures over 100 °C, when deprotonated it must be heated over 260 °C. As long as the temperature remains within this range, only regions of the Nafion that are protonated will shrink. The deprotonated Nafion is "locked" and does not shrink. The researchers make use of this by programing the information required for folding in the form of a pattern of "unlocked" regions in a stretched piece of Nafion foil that has been "locked" with potassium hydroxide. The pattern is „painted" onto the sheet using hydrochloric acid. When heated above 100 °C, the sheet shrinks in the region of the lines and folds itself along these "creases".

The scientists made some simple and some complex structures, such as a bird and a zigzag rip pattern common in technical practice; solar panels for satellites, for example, are transported in a folded way and can be spread in just one movement. Simple acid-base chemistry and heating "erased" the structures and the nafion sheets could be coded and folded in a new fashion.

The 3D structures made from Nafion can be used as a master mold. This can be used to cast a secondary mold from plastics like polydimethylsiloxane, which can then be used to make molded components from a wide variety of materials, including polymers, ceramics, or metal. The reprogrammable master molds save time, money, and waste because they can be directly reused without a costly recycling process.
-end-
About the Author

Dr. Jian Chen is an Associate Professor of Chemistry at University of Wisconsin-Milwaukee. His current research interests focus on bio-inspired smart polymers and composites, and nanocarbon materials.

https://uwm.edu/chemistry/people/chen-jian/

Wiley

Related Origami Articles:

DNA 'origami' takes flight in emerging field of nano machines
'DNA mechanotechnology' is a new field to engineer DNA machines that generate, transmit and sense mechanical forces at the nanoscale.
Hyperbolic paraboloid origami harnesses bistability to enable new applications
Researchers at the Georgia Institute of Technology and the University of Tokyo are looking the 'hypar' origami for ways to leverage its structural properties.
Shape-shifting sheets
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a mathematical framework that can turn any sheet of material into any prescribed shape, inspired by the paper craft termed kirigami (from the Japanese, kiri, meaning to cut and kami, meaning paper).
DNA origami to scale-up molecular motors
Researchers have successfully used DNA origami to make smooth-muscle-like contractions in large networks of molecular motor systems, a discovery which could be applied in molecular robotics.
Origami-inspired materials could soften the blow for reusable spacecraft
University of Washington researchers have developed a novel solution to help reduce impact forces -- for potential applications in spacecraft, cars and beyond.
Morphing origami takes a new shape, expanding use possibilities
Researchers at the Georgia Institute of Technology have created a new type of origami that can morph from one pattern into a different one, or even a hybrid of two patterns, instantly altering many of its structural characteristics.
Quantum physics and origami for the ultimate get-well card
The bizarre optical properties of tiny metal particles -- smaller than light waves -- can be captured on paper to detect even a single target molecule in a test sample.
Study unfolds a new class of mechanical devices
In a paper published today in Science Robotics, engineers at Brigham Young University detail new technology that allows them to build complex mechanisms into the exterior of a structure without taking up any actual space below the surface.
DNA origami: A precise measuring tool for optimal antibody effectiveness
Using DNA origami -- DNA-based design of precise nanostructures -- scientists at Karolinska Institutet, Sweden, in collaboration with researchers at University of Oslo, Norway, have been able to demonstrate the most accurate distance between densely packed antigens in order to get the strongest bond to antibodies in the immune system.
Shape-shifting origami could help antenna systems adapt on the fly
Researchers at the Georgia Institute of Technology have devised a method for using an origami-based structure to create radio frequency filters that have adjustable dimensions, enabling the devices to change which signals they block throughout a large range of frequencies.
More Origami News and Origami Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.