Nav: Home

New 3-D model predicts best planting practices for farmers

June 23, 2017

As farmers survey their fields this summer, several questions come to mind: How many plants germinated per acre? How does altering row spacing affect my yields? Does it make a difference if I plant my rows north to south or east to west? Now a computer model can answer these questions by comparing billions of virtual fields with different planting densities, row spacings, and orientations.

The University of Illinois and the Partner Institute for Computational Biology in Shanghai developed this computer model to predict the yield of different crop cultivars in a multitude of planting conditions. Published in BioEnergy-Research, the model depicts the growth of 3D plants, incorporating models of the biochemical and biophysical processes that underlie productivity.

Teaming up with the University of Sao Paulo in Brazil, they used the model to address a question for sugarcane producers: How much yield might be sacrificed to take advantage of a possible conservation planting technique?

"Current sugarcane harvesters cut a single row at a time, which is time-consuming and leads to damage of the crop stands," said author Steve Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the Carl R. Woese Institute for Genomic Biology. "This could be solved if the crop was planted in double rows with gaps between the double rows. But plants in double rows will shade each other more, causing a potential loss of profitability."

The model found that double-row spacing costs about 10% of productivity compared to traditional row spacing; however, this loss can be reduced to just 2% by choosing cultivars with more horizontal leaves planted in a north-south orientation.

"This model could be applied to other crops to predict optimal planting designs for specific environments," said Yu Wang, a postdoctoral researcher at Illinois who led the study. "It could also be used in reverse to predict the potential outcome for a field."

The authors predict this model will be especially useful when robotic planting becomes more commonplace, which will allow for many more planting permutations.
-end-
This research was supported by the IGB, Energy Biosciences Institute, Realizing Increased Photosynthetic Efficiency (RIPE) project, and the Chinese Academy of Sciences.

The paper "Development of a Three-Dimensional Ray-Tracing Model of Sugarcane Canopy Photosynthesis and Its Application in Assessing Impacts of Varied Row Spacing" is published by BioEnergy-Research (DOI: 10.1007/s12155-017-9823-x). Co-authors include: Yu Wang, Qingfeng Song, Deepak Jaiswal, Amanda P. de Souza, and Xin-Guang Zhu.

The Carl R. Woese Institute for Genomic Biology (IGB) advances life sciences research through interdisciplinary collaborations within a state-of-the-art genomic research facility at the University of Illinois.

The Energy Biosciences Institute (EBI) is a public-private collaboration to help solve the global energy challenge.

Realizing Increased Photosynthetic Efficiency (RIPE) is an international research project funded by the Bill & Melinda Gates Foundation to engineer plants to more efficiently turn the sun's energy into food to sustainably increase worldwide food productivity.

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Related Plants Articles:

How plants react to fungi
Using special receptors, plants recognize when they are at risk of fungal infection.
Flame retardants -- from plants
Flame retardants are present in thousands of everyday items, from clothing to furniture to electronics.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
Plants are also stressed out
What will a three-degree-warmer world look like? When experiencing stress or damage from various sources, plants use chloroplast-to-nucleus communication to regulate gene expression and help them cope.
How plants defend themselves
Like humans and animals, plants defend themselves against pathogens with the help of their immune system.
An easier way to engineer plants
MIT researchers have developed a genetic tool that could make it easier to engineer plants that can survive drought or resist fungal infections.
Plants can smell, now researchers know how
Plants don't need noses to smell. The ability is in their genes.
Plants as antifungal factories
Researchers from three research institutes in Spain have developed a biotechnological tool to produce, in a very efficient manner, antifungal proteins in the leaves of the plant Nicotiana benthamiana.
How plants cope with stress
With climate change comes drought, and with drought comes higher salt concentrations in the soil.
Plants can tell the time using sugars
A new study by an international team of scientists, including the University of Bristol, has discovered that plants adjust their daily circadian rhythm to the cycle of day and night by measuring the amount of sugars in their cells.
More Plants News and Plants Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.