Nav: Home

Bird's eye perspective

June 23, 2017

Humans belong to a select club of species that enjoy crisp color vision in daylight, thanks to a small spot in the center of the retina at the back of the eye. Other club members include monkeys and apes, various fish and reptiles, and many birds, which must home in on their scurrying dinners from afar or peck at tiny seeds.

Less clear is what controls the formation of the high-acuity spot, known as the fovea in humans.

Harvard Medical School researchers have now provided the first insight into this perplexing question by studying an unusual model: chickens.

Connie Cepko, Bullard Professor of Genetics and Neuroscience at HMS, and Susana da Silva, a postdoctoral fellow in the Cepko lab, found that formation of the high-acuity area in chicks requires suppression of retinoic acid, a derivative of vitamin A known to play many important roles in embryonic development.

In addition to deepening our understanding of how humans acquired sensitive daytime vision, the findings, reported June 22 in Developmental Cell, could help regenerative medicine researchers model healthy human eyes.

If the discoveries hold true in humans, the work might also one day provide clues about how to combat macular degeneration, the leading cause of vision loss among people age 50 and older. The macula is the part of the retina where the fovea is found.

"I think it's important to understand how you build this specialized area in the retina that's responsible for any major activity you do during the day, such as reading, driving, recognizing faces and using the phone," said da Silva. "It would also be exciting if people can use what we learn from this basic developmental question to treat diseases affecting the retina."

Most of the human retina--the photosensitive part of the eye that translates light into nerve signals and relays them to the brain--is lined with rod cells, which allow us to see well in dim light. The fovea, however, consists almost entirely of cone cells, which respond to color and bright light.

Twenty years ago, a researcher in Cepko's lab discovered that chickens also have a rod-free zone.

Although it's not yet clear how closely the chickens' high-acuity areas match ours, Cepko believes it's a good place to start asking questions--especially since scientists' usual collection of mammalian model organisms, including mice, rats, rabbits and guinea pigs, don't have anything like a fovea.

In the new studies of chick embryos, Cepko and da Silva found that the complex patterning of cells in the rod-free zone formed because of a drop in retinoic acid that occurred only in that area of the retina and only for a brief time during development.

What spurred the drop? Probing further, the researchers found that the answer lay in a shifting balance between enzymes that create and those that destroy retinoic acid.

Enzymes known as retinaldehyde dehydrogenases, or Raldhs, ordinarily make retinoic acid in the retina. But Cepko and da Silva discovered that as cones and ganglion cells formed, levels of the enzymes Cyp26a1 and Cyp26c1 surged, breaking down retinoic acid faster than Raldhs could produce it.

When retinoic acid levels fell, a protein called fibroblast growth factor 8, or Fgf8, flourished, the investigators found. Fgf8 is another well-known molecule in embryonic development that often works with retinoic acid to stimulate and pattern cell growth.

Once their work was done, the Cyp26a1 and Cyp26c1 enzymes ebbed away, allowing Raldhs to replenish retinoic acid in the rod-free zone.

Cepko and da Silva saw similar expression patterns for Raldhs and Cyp26a1 in human retinal tissue, suggesting that something similar happens in people.

"This is the first mechanism we've uncovered for how this area forms," said Cepko. "We don't know where it will lead, but it's pretty exciting."

Stem cell researchers have made remarkable progress in building so-called organoids that mimic human eyes so they can study human health and disease. But they have run into a problem that the new study may help them solve.

"People can grow these incredible little eyes from stem cells, but so far no one's been able to form a fovea," said Cepko, who is also an HMS professor of ophthalmology at Massachusetts Eye and Ear.

She believes the trouble may arise because the researchers add retinoic acid to their cell cultures.

"We're suggesting that removing retinoic acid at the right time, adding Fgf8 or otherwise manipulating these two molecules may allow them to generate a fovea," she said.

It's also possible that the research will provide a foundation for investigating why the macula is so prone to disease, which could in turn lead to new treatments.

"Macular degeneration is a major problem for the aging population, and we don't understand why that area is vulnerable," said Cepko.

But Cepko and da Silva are driven mainly by the excitement of answering questions about the retina, learning about human development and probing evolutionary relationships between species.

"Now that we have molecules we can examine, we can ask cool natural history questions," said Cepko, who, with da Silva, plans to study lizards and birds that have two foveae in each eye.

"We can also ask questions like, 'Does every species with a high-acuity area use the same mechanisms?'" said Cepko. "If so, we may have inherited it from a common ancestor."
-end-
Funding for this research was provided by the Howard Hughes Medical Institute. Cepko is an HHMI Investigator.

Harvard Medical School

Related Enzymes Articles:

How nature builds hydrogen-producing enzymes
A team from Ruhr-Universität Bochum and the University of Oxford has discovered how hydrogen-producing enzymes, called hydrogenases, are activated during their biosynthesis.
New family on the block: A novel group of glycosidic enzymes
A group of researchers from Japan has recently discovered a novel enzyme from a soil fungus.
Surprising enzymes found in giant ocean viruses
A new study led by researchers at Woods Hole Oceanographic Institution (WHOI) and Swansea University Medical School furthers our knowledge of viruses -- in the sea and on land -- and their potential to cause life-threatening illnesses.
How host-cell enzymes combat the coronavirus
Host-cell enzymes called PARP12 and PARP14 are important for inhibiting mutant forms of a coronavirus, according to a study published May 16 in the open-access journal PLOS Pathogens by Stanley Perlman of the University of Iowa, Anthony Fehr of the University of Kansas, and colleagues.
New method enables 'photographing' of enzymes
Scientists at the University of Bonn have developed a method with which an enzyme at work can be 'photographed'.
More Enzymes News and Enzymes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...