Nav: Home

Research accelerates quest for quicker, longer-lasting electronics

June 23, 2017

RIVERSIDE, Calif. ( -- In the world of electronics, where the quest is always for smaller and faster units with infinite battery life, topological insulators (TI) have tantalizing potential.

In a paper published today in "Science Advances," Jing Shi, a professor of physics and astronomy at the University of California, Riverside, and colleagues at Massachusetts Institute of Technology (MIT), and Arizona State University report they have created a TI film just 25 atoms thick that adheres to an insulating magnetic film, creating a "heterostructure." This heterostructure makes TI surfaces magnetic at room temperatures and higher, to above 400 Kelvin or more than 720 degrees Fahrenheit.

The surfaces of TI are only a few atoms thick and need little power to conduct electricity. If TI surfaces are made magnetic, current only flows along the edges of the devices, requiring even less energy. Thanks to this so-called quantum anomalous Hall effect, or QAHE, a TI device could be tiny and its batteries long lasting, Shi said.

Engineers love QAHE because it makes devices very robust, that is, hearty enough to stand up against defects or errors, so that a faulty application, for instance, doesn't crash an entire operating system.

Topological insulators are the only materials right now that can achieve the coveted QAHE, but only after they are magnetized, and therein lies the problem: TI surfaces aren't naturally magnetic.

Scientists have been able to achieve magnetism in TI by doping, i.e. introducing magnetic impurities to the material, which also made it less stable, Shi said. The doping allowed TI surfaces to demonstrate QAHE, but only at extremely low temperatures--a few hundredths of a degree in Kelvin above absolute zero, or about 459 degrees below zero Fahrenheit--not exactly conducive to wide popular use.

Many scientists blamed the doping for making QAHE occur only at very low temperatures, Shi said, which prompted researchers to start looking for another technique to make TI surfaces magnetic.

Enter UCR's SHINES (Spins and Heat in Nanoscale Electronic Systems) lab, a Department of Energy-funded energy frontier research center at UCR that Shi leads and is focused on developing films, composites and other ways to harvest or use energy more efficiently from nano (think really small, as in molecular or atom-sized) technology.

In 2015, Shi's lab first created heterostructures of magnetic films and one-atom-thick graphene materials by using a technique called laser molecular beam epitaxy. The same atomically flat magnetic insulator films are critical for both graphene and topological insulators.

"The materials have to be in intimate contact for TI to acquire magnetism," Shi said. "If the surface is rough, there won't be good contact. We're good at making this magnetic film atomically flat, so no extra atoms are sticking out."

UCR's lab then sent the materials to its collaborators at MIT, who used molecular beam epitaxy to build 25 atomic TI layers on top of the magnetic sheets, creating the heterostructures, which were then sent back to UCR for device fabrication and measurements.

More research is needed to make TI show the quantum anomalous Hall effect (QAHE) at high temperatures, and then make the materials available for miniaturization in electronics, Shi said, but the SHINES lab findings show that by taking the heterostructures approach, TI surfaces can be made magnetic--and robust--at normal temperatures.

Making smaller, faster devices operate at the same or higher levels of efficiency as their larger, slower predecessors "doesn't happen naturally," Shi said.

"Engineers work hard to make all the devices work the same way and it takes a lot of engineering to get there."

UCR SHINES lab researcher Chi Tang is first author on the paper in "Science Advances," along with co-first author Dr. Cui-Zu Chang, formerly of MIT, and now at Penn State University. The project also included several collaborators from UCR, MIT, Penn State and Arizona State University, Shi said.

University of California - Riverside

Related Topological Insulators Articles:

Quantum research unifies two ideas offering an alternative route to topological superconductivity
Researchers from University of Copenhagen have discovered a new way of developing topological superconductivity that may provide a useful route toward the use of Majorana zero modes as the foundation of qubits for quantum information.
Questionable stability of dissipative topological models for classical and quantum systems
In a new paper in EPJ D, Rebekka Koch from Amsterdam and Jan Carl Budich from Dresden analyse the spectral instability of energy-dissipative systems caused by their boundaries: A situation that is naturally given in experimental setups.
CNIO and Cabimer researchers show that DNA topological problems may cause lymphoma
Movements and changes in 3D genome structure form knots and tangles in the DNA.
Topological materials outperform through quantum periodic motion
Scientists at the US Department of Energy's Ames Laboratory have discovered that applying vibrational motion in a periodic manner may be the key to preventing dissipations of the desired electron states that would make advanced quantum computing and spintronics possible.
Measuring a dynamical topological order parameter in quantum walks
Nonequilibrium dynamical processes are central in many quantum technological contexts.
First electrically-driven 'topological' laser developed by Singapore and UK scientists
Scientists and engineers from Nanyang Technological University, Singapore (NTU Singapore) and the University of Leeds in the UK have created the first electrically-driven 'topological' laser, which has the ability to route light particles around corners -- and to cope with defects in the manufacture of the device.
New quantum switch turns metals into insulators
Researchers at the University of British Columbia have demonstrated an entirely new way to precisely control electrical currents by leveraging the interaction between an electron's spin and its orbital rotation around the nucleus.
Exotic new topological state discovered in Dirac semimetals
An international team of scientists has discovered an exotic new form of topological state in a large class of 3D semi-metallic crystals called Dirac semimetals.
Charge model for calculating the photoexcited states of one-dimensional Mott insulators
Japanese researchers have developed a charge model to describe photoexcited states of one-dimensional Mott insulators.
Topological semimetals can generate sizable transverse thermoelectric figure of merit
Thermoelectric materials can convert temperature difference in a conducting solid into electrical energy, or vice versa.
More Topological Insulators News and Topological Insulators Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at