Nav: Home

Research accelerates quest for quicker, longer-lasting electronics

June 23, 2017

RIVERSIDE, Calif. ( -- In the world of electronics, where the quest is always for smaller and faster units with infinite battery life, topological insulators (TI) have tantalizing potential.

In a paper published today in "Science Advances," Jing Shi, a professor of physics and astronomy at the University of California, Riverside, and colleagues at Massachusetts Institute of Technology (MIT), and Arizona State University report they have created a TI film just 25 atoms thick that adheres to an insulating magnetic film, creating a "heterostructure." This heterostructure makes TI surfaces magnetic at room temperatures and higher, to above 400 Kelvin or more than 720 degrees Fahrenheit.

The surfaces of TI are only a few atoms thick and need little power to conduct electricity. If TI surfaces are made magnetic, current only flows along the edges of the devices, requiring even less energy. Thanks to this so-called quantum anomalous Hall effect, or QAHE, a TI device could be tiny and its batteries long lasting, Shi said.

Engineers love QAHE because it makes devices very robust, that is, hearty enough to stand up against defects or errors, so that a faulty application, for instance, doesn't crash an entire operating system.

Topological insulators are the only materials right now that can achieve the coveted QAHE, but only after they are magnetized, and therein lies the problem: TI surfaces aren't naturally magnetic.

Scientists have been able to achieve magnetism in TI by doping, i.e. introducing magnetic impurities to the material, which also made it less stable, Shi said. The doping allowed TI surfaces to demonstrate QAHE, but only at extremely low temperatures--a few hundredths of a degree in Kelvin above absolute zero, or about 459 degrees below zero Fahrenheit--not exactly conducive to wide popular use.

Many scientists blamed the doping for making QAHE occur only at very low temperatures, Shi said, which prompted researchers to start looking for another technique to make TI surfaces magnetic.

Enter UCR's SHINES (Spins and Heat in Nanoscale Electronic Systems) lab, a Department of Energy-funded energy frontier research center at UCR that Shi leads and is focused on developing films, composites and other ways to harvest or use energy more efficiently from nano (think really small, as in molecular or atom-sized) technology.

In 2015, Shi's lab first created heterostructures of magnetic films and one-atom-thick graphene materials by using a technique called laser molecular beam epitaxy. The same atomically flat magnetic insulator films are critical for both graphene and topological insulators.

"The materials have to be in intimate contact for TI to acquire magnetism," Shi said. "If the surface is rough, there won't be good contact. We're good at making this magnetic film atomically flat, so no extra atoms are sticking out."

UCR's lab then sent the materials to its collaborators at MIT, who used molecular beam epitaxy to build 25 atomic TI layers on top of the magnetic sheets, creating the heterostructures, which were then sent back to UCR for device fabrication and measurements.

More research is needed to make TI show the quantum anomalous Hall effect (QAHE) at high temperatures, and then make the materials available for miniaturization in electronics, Shi said, but the SHINES lab findings show that by taking the heterostructures approach, TI surfaces can be made magnetic--and robust--at normal temperatures.

Making smaller, faster devices operate at the same or higher levels of efficiency as their larger, slower predecessors "doesn't happen naturally," Shi said.

"Engineers work hard to make all the devices work the same way and it takes a lot of engineering to get there."

UCR SHINES lab researcher Chi Tang is first author on the paper in "Science Advances," along with co-first author Dr. Cui-Zu Chang, formerly of MIT, and now at Penn State University. The project also included several collaborators from UCR, MIT, Penn State and Arizona State University, Shi said.

University of California - Riverside

Related Topological Insulators Articles:

Topological nanoelectronics
Physicists at the University of Würzburg have made a ground-breaking discovery: They have realized a fundamental nanoelectronic device based on the topological insulator HgTe previously discovered in Würzburg.
How to control friction in topological insulators
Topological insulators are innovative materials that conduct electricity on the surface, but act as insulators on the inside.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Spying on topology
Topological insulators are quantum materials, which, due to their exotic electronic structure, on surfaces and edges conduct electric current like metal, while acting as an insulator in bulk.
Evidence of anomalously large superconducting gap on topological surface state of β-Bi2Pd film
Hong Ding's group from the Institute of Physics, Chinese Academy of Science reported the superconducting gap of topological surface state is larger than that of bulk states in β-Bi2Pd thin films using in-situ angle-resolved photoemission spectroscopy and molecular beam epitaxy.
Princeton physicists discover topological behavior of electrons in 3D magnetic material
Researchers explored a type of material in which the electrons behave according to the mathematical rules of topology.
Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly
Photonic chips promise even faster data transfer speeds and information-dense applications, but the components necessary for building them remain considerably larger than their electronic counterparts, due to the lack of efficient data-routing architecture.
Speeding up the hydrogen production by the magic topological surface states
The hydrogen economy is considered to be one of the best options for providing renewable energy and, thereby, contributing to mitigating today's environmental challenges.
HKUST-PKU unveiled first quantum simulation of 3D topological matter with ultracold atoms
Physicists from HKUST and PKU have successfully created the world's first 3D simulation of topological matter consisting of ultracold atoms.
Experimental observation of a new class of materials: Excitonic insulators
A FLEET study has found evidence of a new phase of matter predicted in the 1960s: the excitonic insulator, which has been keenly pursued by condensed matter physicists and 2D material scientists.
More Topological Insulators News and Topological Insulators Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at