Nav: Home

Tracking down cryptic peptides

June 23, 2020

Almost all cells of the human body present fragments of cellular proteins on their surface, so-called human leukocyte antigens or HLA peptides, which play an important role in the immune response. If the immune system detects foreign HLA peptides, such as viral peptides on a virus-infected cell or mutated peptides on a tumour cell, T-cells eliminate the corresponding cell. The entirety of the HLA peptides presented on a cell is referred to as the cell´s immunopeptidome.

New approach enables comprehensive analysis for the first time

Besides the usual HLA peptides, there are also cryptic HLA peptides. These are derived from specific RNA sequences that do not contain information for a specific protein as is usually the case. Over the last few decades, only a few cryptic HLA peptides have been identified because they are very small and are quickly degraded in the cells. On the other hand, efficient computer algorithms for the analysis were lacking.

In a completely new approach, the Würzburg scientists have now combined several analytical methods that are particularly suitable for small peptides. "Using a novel bioinformatics method developed by us, for the first time we were able to identify thousands of cryptic HLA peptides in the immunopeptidomes of a wide variety of tumors such as melanoma and breast cancer," explains Dr. Andreas Schlosser, research group leader at the Rudolf Virchow Center at Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany.

The new bioinformatics approach is based exclusively on data from mass spectrometry, a method for determining the mass of molecules such as Peptides. This makes it possible to systematically and comprehensively determine the cryptic HLA peptides. In addition, it was possible to clarify on which cells and to what extent cryptic peptides are present: "We were able to show that cryptic HLA peptides make up a significant part of the immunopeptidomes of tumors," explains Prof. Dr. Florian Erhard, group leader at the JMU Institute of Virology.

Effective points of attack for the immune system

It was already known from individual studies that cryptic peptides can trigger autoimmune reactions such as in diabetes type 1 as well as immune responses against tumor cells. The new analyses provide evidence that certain cryptic HLA peptides are exclusively found on tumour cells. Such tumour-specific cryptic HLA peptides might thus prove to be worthwhile target structures for cancer immunotherapies. Scientists at the University of Würzburg and the University Hospital of Würzburg are already examining a selection of the identified peptides to determine whether they are suitable as targets for cancer immunotherapy.

Virus-infected cells also present cryptic HLA peptides that could be used as a target structure for vaccines. With their new method, the researchers thus have an effective tool in hand to learn more about the general function and formation of cryptic peptides. "We hope that our bioinformatics approach will provide us with a better understanding of autoimmune reactions as well as immune reactions against tumour cells and virus-infected cells," says Schlosser.
-end-


University of Würzburg

Related Tumor Cells Articles:

Feeding off fusion or the immortalization of tumor cells
Despite all recent progress, cancer remains one of the deadliest human diseases.
How do tumor cells divide in the crowd?
Scientists led by Dr. Elisabeth Fischer-Friedrich, group leader at the Excellence Cluster Physics of Life (PoL) and the Biotechnology Center TU Dresden (BIOTEC) studied how cancer cells are able to divide in a crowded tumor tissue and connected it to the hallmark of cancer progression and metastasis, the epithelial-mesenchymal transition (EMT).
How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.
Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.
New pathway to attack tumor cells identified
A study led by the Institut de Neurociències (INc-UAB) describes a new strategy to tackle cancer, based on inducing a potent stress in tumor causing cell destruction by autophagy.
Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Blocking sugar structures on viruses and tumor cells
During a viral infection, viruses enter the body and multiply in its cells.
Tumor of the touch cells: A first-of-its-kind study in India
A team of researchers from the National Centre for Biological Sciences, Bangalore, a pathologist at the Tata Memorial Centre, Mumbai and scientists at ACTREC, Navi Mumbai, joined hands to study the basis of a skin cancer known as Merkel cell carcinoma (MCC).
Achilles heel of tumor cells
In almost all cases of colon cancer, a specific gene is mutated -- this offers opportunities to develop broadly effective therapeutic approaches.
Engineered T cells may be harnessed to kill solid tumor cells
A new Tel Aviv University study finds that a form of immunotherapy used to treat the blood cancer leukemia may be effective in treating other kinds of cancer as well.
More Tumor Cells News and Tumor Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.