Unravelling the circuitry that controls cancer growth and spread

June 23, 2020

Research led by Queen Mary University of London has revealed novel insights into the molecular circuitry controlling cancer cell growth and spread. The findings highlight new pathways involved in these key processes of cancer progression that may represent targets for therapies.

A complex communication network

The study, published today in Science Signaling, set out to uncover how a protein called MET drives cancer progression. Research has shown faulty or mutated versions of MET to be involved in cancer cell growth and spread in a variety of cancer types; however, the precise mechanisms by which it controls these processes are unknown.

MET belongs to a group of proteins called receptor tyrosine kinases (RTKs), which are key regulatory proteins involved in a variety of signalling pathways that control normal cellular processes. Abnormal changes to RTKs are implicated in the development and progression of many types of cancer, making them a popular target for cancer treatment.

The team, made up of researchers from the BCI, led by Dr Stéphanie Kermorgant, and The Institute of Cancer Research, London, including Dr Alexia Hervieu and Dr Paul Clarke, looked at cells and preclinical models in which MET was mutated. They found that the protein activated two distinct pathways to drive cancer cell growth and migration, by interacting with other key molecules that help MET to carry out these functions.

One molecule identified as a key player in these MET-driven processes was Rac1. It is widely understood that Rac1 is involved in cancer cell migration; however, the team found Rac1 to also be critical in driving cancer cell growth, via interaction with another protein called mTOR. This interaction occurs inside the cells (in structures called endosomes), followed by a relocation of the two molecules to the cell boundary - an unusual place for mTOR to be found. In a separate pathway, MET also communicates with another molecule, PI3K, to drive cell migration.

First author of the study Dr Hervieu, who did her PhD under Dr Kemorgant's supervision and is currently a postdoctoral researcher at The Institute of Cancer Research (ICR), said: "Grasping how MET controls cell behaviour in cancer is a crucial step towards improving treatment. The unexpected discovery of Rac1's role in this context expands our understanding of how MET deregulates cells and opens new opportunities for cancer research."

The research was primarily funded by Cancer Research UK and the Medical Research Council, with additional funding from the Rosetrees Trust, Breast Cancer Now and Pancreatic Cancer Research Fund.

Overcoming drug resistance

Cancer cell migration is key for metastasis - the spread of cancer cells from one site in the body to another. Metastatic disease is the leading cause of cancer mortality; however, there is currently no cure. Understanding the processes that drive metastasis and finding ways to stop these is vital for the development of more efficacious cancer treatments.

Drugs that target MET are being tested in clinical trials; however, patients often develop resistance to these drugs as the cancer can learn to activate the MET-driven pathways in other ways. The insights gained from this study may pave the way for the development of new treatment regimens; if drugs to target MET are used in combination with drugs that inhibit mTOR and PI3K, treatments may be effective for longer. Interestingly, drugs that inhibit mTOR and PI3K at the same time have recently been developed.

Dr Kermorgant said: "We are very excited with this discovery which suggests that MET, a major cancer target, may be co-targeted with existing drugs against two other major targets, PI3K and mTOR. This could be tested in clinical trials in a near future."

This study refines the current understanding of how MET controls the signalling pathways involved in cancer growth and spread, and identifies the key players involved in these processes. Targeting these molecules in combination may offer more efficacious treatment outcomes for patients with cancer.
-end-
More information

Research paper: 'Rac1 promotes oncogenic Met-dependent cell migration and anchorage-independent growth, while PI3K promotes migration only'. Science Signalling.

Queen Mary University of London

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.