Novel CU-Boulder Plant Chamber Set For July 1 Reflight On Space Shuttle

June 23, 1997

A University of Colorado at Boulder-built plant-growth chamber that carried pharmaceutical and agricultural experiments aboard an abbreviated NASA space shuttle mission in April will be reflown on a 16-day mission aboard the space shuttle Columbia July 1.

The April shuttle flight was cut back to four days because of a faulty fuel cell. "Fortunately, we have had an extra three months to fine-tune our hardware and experiments," said Louis Stodieck, associate director of Bioserve Space Technologies Center, headquartered in CU-Boulder's aerospace engineering sciences department.

The payload -- known as the Plant Generic Bioprocessing Apparatus, or PGBA -- and seven experiments were developed by faculty, students and industry affiliates from the center in collaboration with a team at the NASA-Ames Research Center in Moffett Field, Calif. Researchers are using the low-gravity space environment to develop products and technologies in life science, agriculture and medicine.

The 125-pound, automated plant-growth facility will be used to grow food and pharmaceutical and forest plants in space, said BioServe's Alex Hoehn, who headed up design and development of the television-sized plant chamber.

The plant growth chamber is the largest to be flown on a shuttle that can precisely control specific environmental conditions like temperature, humidity, light and carbon dioxide. It also is the first such device with direct data uplink, downlink and video capabilities, said Stodieck, allowing BioServe faculty and students to control and manipulate experiments from the CU-Boulder campus.

Two BioServe experiments sponsored by a large U.S. pharmaceutical company will test the effects of microgravity on plant species known as sweet wormwood and rosy periwinkle. Both plants naturally produce tiny quantities of pharmaceutically important compounds --one plant makes an anti-malarial drug while the other produces precursors to anticancer agents, he said.

Previous BioServe experiments indicate that significantly less lignin -- a substance in plants that affects their strength and stiffness -- is produced in microgravity. "We are hypothesizing that a decrease in lignin production in space may lead to an enhancement in other plant metabolic pathways which are of commercial benefit," said Gerard Heyenga, a principal science investigator on the study from NASA-Ames. "Increased production of plant secondary compounds could ultimately lower the costs of certain pharmaceuticals or lead to the development of new drugs."

"We are entering a new era in space as plans for the construction of the international space station move ahead," said Stodieck. Because much of the cargo shuttle space will be used to ferry building materials into orbit in the coming years, there will be fewer flight opportunities for scientific experiments like those from BioServe, which has flown experiments on 12 shuttle missions, he said.

"But once the space station is assembled, we expect to have near continuous access to space over the long duration needed to complete many of these experiments," he said. While the upcoming Columbia mission will provide nearly 16 days of microgravity, the space station will be able to provide months or even years that may be required for particular commercial investigations, especially those involving plants.

The plant chamber will occupy the "Express Rack" aboard Columbia. Designed by Marshall Space Flight Center, the novel rack will eventually permit experiments to be quickly transferred from NASA shuttles to the International Space Station. Three of the seven astronauts on Columbia have been trained to use the BioServe plant chamber and will help manipulate experiments during the mission.

In cooperation with Dean Foods Vegetable Co. of Green Bay, Wis., BioServe also will fly spinach plants in the chamber. A better understanding of the effects of low gravity on the structure, tenderness and production of sugars, starch and fatty acids in spinach may help researchers develop more tender varieties for dinner tables and heartier strains of vegetables that can withstand severe weather.

BioServe also will fly loblolly pine seedlings for Georgia Pacific of Atlanta to monitor lignin and wood formation. Low-gravity research could benefit the forest products industry by allowing for the eventual development of superior strains of commercial lumber and paper products, said Heyenga.

Researchers and students from Kansas State University, a joint partner in BioServe, will fly additional experiments in the PGBA. One will test the effects of microgravity on tomato gene expression, while the second will investigate methods of infecting cereal crops with nitrogen-fixing bacteria known as rhizobia that naturally benefit legumes like peas and beans by snaring nitrogen from the atmosphere.

Developing ways of infecting crops like corn and wheat with rhizobium could help reduce the need for fertilizers on Earth, researchers believe.

BioServe is a joint center of CU, KSU and industrial affiliates and one of 11 NASA Centers for Space Commercialization with active space flight programs.

University of Colorado at Boulder

Related International Space Station Articles from Brightsurf:

Amyloid formation in the International Space Station
The collaborative research team of Japan using the International Space Station (ISS) successfully characterized Alzheimer's disease-related amyloid fibril formation under microgravity conditions.

Bacteria on the International Space Station no more dangerous than earthbound strains
Two particularly tenacious species of bacteria have colonized the potable water dispenser aboard the International Space Station (ISS), but a new study suggests that they are no more dangerous than closely related strains on Earth.

NASA researchers catalogue all microbes and fungi on the International Space Station
A comprehensive catalogue of the bacteria and fungi found on surfaces inside the International Space Station (ISS) is being presented in a study published in the open-access journal Microbiome.

Superbugs have colonized the International Space Station -- but there's a silver lining
Researchers have taken another small step towards deep space exploration, by testing a new silver- and ruthenium-based antimicrobial coating aboard the International Space Station (ISS).

Technology developed in Brazil will be part of the International Space Station
Presented during FAPESP Week London, instrument created in São Paulo will be improved in collaboration with Russia and will measure solar flares; launch is scheduled for 2022.

'Dust up' on International Space Station hints at sources of structure
In a lab on Earth, electrically charged dust generally lines up either along the downward pull of gravity or across it.

May the forest be with you: GEDI moves toward launch to space station
GEDI (pronounced like 'Jedi,' of Star Wars fame) is a first-of-its-kind laser instrument designed to map the world's forests in 3-D from space.

The bacterial community on the International Space Station resembles homes
Microbiologists at the University of California, Davis analyzed swabs taken by astronauts on the International Space Station (ISS) and compared them with samples from homes on earth as well as the Human Microbiome Project.

NASA watching Harvey from satellites and the International Space Station
NASA has a lot of resources providing information on Tropical Storm Harvey as it continues to drop tremendous, flooding rainfall on Texas and Louisiana.

Experiment aboard space station studies 'space weather'
To study conditions in the ionosphere, Cornell University research engineer Steven Powell and others in the College of Engineering have developed the FOTON (Fast Orbital TEC for Orbit and Navigation) GPS receiver.

Read More: International Space Station News and International Space Station Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to