How mitochondria get their membranes bent

June 24, 2009

Mitochondria are the powerhouses of cells. Underneath their smooth surface they harbor an elaborately folded inner membrane. It holds a multitude of bottleneck like invaginations, which expand into elongated cavities (cristae). The narrow shape of the entrance or pore to the cristae ('crista junction') allows separation of the intracristal space and storage of molecules. Cytochrome c, for example, an important signaling protein in programmed cell death (apoptosis), is stored in this compartment. When apoptosis is triggered, the pores enlarge and cytochrome c is released into the cytosol. Thus, understanding of how the pore diameter and the shape of the inner membrane are regulated on a molecular basis is of great relevance to a better understanding of mitochondrial function in general. Recently, in cooperation with other research teams, the group of Prof. Andreas Reichert, who has been appointed as professor for Mitochondrial Biology to the Goethe University within the Cluster of Excellence Macromolecular Complexes in 2007, has identified two proteins linked in an antagonistic manner that are relevant for governing inner membrane structure.

In the current issue of the the Journal of Cell Biology Rabl, Soubannier et al. report on their quest of slow-growing baker`s yeast mutants harboring deformed mitochondria. Thereby, they discovered the protein Fcj1 ("Formation of criasta junction protein 1"), which is embedded in the inner membrane and accumulates at crista junctions. Upon increased expression of Fcj1 the number of cristae junctions goes up. Without the protein, however, crista junctions are lacking and the inner cristae membrane forms internal parallel stacks of vesicles.

On the other hand, the researchers found that regular assemblies (supercomplexes) of the F1FO-ATPase, a protein complex required for supplying the cell's energy, accumulated at the cristae tips but were less abundant at crista junctions. In addition, Fcj1 and the F1FO-ATPase appear to have opposing functions. In fact, Fcj1 reduces the formation of F1FO-supercomplexes. "We hypothesize, Fcj1 makes sure that the membrane can adopt a negative curvature, while the F1FO-ATPase supercomplex induces positive bending", Andreas Reichert interprets the results. "This is highly exciting, as we have for the first time found out how mitochondrial ultrastructure is regulated and which components determine the structure of crista junctions at all."
-end-
Original publication: Rabl, R.*, Soubannier, V.*, Scholz, R., Vogel, F., Mendl, N., Vasiljev-Neumeyer, A., Körner, C., Jagasia, R., Keil, T., Baumeister, W., Cyrklaff, M., Neupert, W., and Reichert, A.S. (2009). Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J Cell Biol, 2009; ePub 15th June 2009. *equally contributed

Goethe University Frankfurt

Related Mitochondria Articles from Brightsurf:

Researchers improve neuronal reprogramming by manipulating mitochondria
Researchers at Helmholtz Zentrum M√ľnchen and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism.

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.